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This talk is NOT 
about

Data cleaning, data monitoring, 
data pipeline management, 

improving your data in any way.



This talk is about
Drawing correct inferences from 

low quality data



A recipe for bad data
Ordinary data science

- Get reasonably clean data
- Do some cleaning, e.g. 

cityname.lower()
- Train a predictive model (e.g. a 

neural network, gradient 
boosting) on the resulting data 
set

Key idea of this talk

- Get unfixably dirty data.
- Identify latent/hidden variables 

that the data is predictive of
- Build model to predict latent 

variables
- Train your final model on the 

latent variables.



Missing data



Funnel Analysis



Funnel analysis
requestID |Enter CC   | Purchase

----------+-----------+----------

abc       | 12:00     | 1:00

def       | 12:01     | null

ghi       | null      | null

jkl       | null      | 1:03 



Funnel analysis
requestID |Enter CC   | Purchase

----------+-----------+----------

abc       | 12:00     | 1:00

def       | 12:01     | null

ghi       | null      | null

jkl       | null      | 1:03  

User made purchase without filling in CC?

WTF is this? I don’t 
even know?



Where does the data come from?
Tracking pixel sends request to our server whenever CC is entered...

Single server collecting thousands of data points per second…

Putting it into hundreds of SqlLite databases…

Stored on 4 disks…

= thousands of disk seeks+fsyncs/sec.

Engineer in me asks: “Is it possible that some data is getting lost?”



A recipe for bad data
Ordinary data science

- Take data as given
- df[‘purchase’]=~df[‘purc

hase_time’].isnull()
- Compute final conversion rate as 

df[‘purchase’].mean()

Key idea of this talk

- Recognize that we lost records 
of conversions that happened.

- Identify latent/hidden variables: 
data loss rate, true number of 
conversions.

- Build model to identify these 
hidden variables

- Final model: 
conversion_rate=true_con
versions / visits



Model the data generating process
P(enter CC) = A

P( purchase | enter CC) = B

P(event observed | event occurs) = D

First two probabilities are interesting to customers - funnel transition probabilities 
(what we want to measure).

Third probability is interesting to us - how well our data collector works.



Data reported to us
100k unique visits

In 40k cases, we saw CC entered but no purchase

In 10k cases, we saw CC entered and purchase

In 5k cases, we saw no CC entered but still a purchase

Questions: What is the conversion rate? How many events are we losing?



Modeling the data
# enter CC ← Binom(100,000 unique visits, P(Enter CC))

40k ← Binom(# enter cc, P(observed) )

# purchase ← Binom(# enter CC, P(submit | Enter CC) )

15k ← Binom(# form submit, P(observed) )

The green represents observable data and the red represents latent (hidden) 
variables. Blue is what the customer wants to see. 

Questions: What is the conversion rate? How many events are we losing?



PyMC to the rescue
model = pymc.Model()
 
with model:
    form_fill_CR = pymc.Uniform( 'form_fill_cr' , lower=0, upper=1)
    submit_CR = pymc.Uniform( 'submit_cr', lower=0, upper=1)
    observe_rate = pymc.Uniform(observed , lower=0, upper=1)
 
    form_fill_actual = pymc.Binomial( 'form_fill_actual' , n=100000, p=form_fill_CR)
    form_fill_obs = pymc.Binomial( 'form_submit_obs' , n=form_fill_actual , p=observe_rate, 
observed=40000)
 
    submit_actual = pymc.Binomial( 'submit_actual' , n=form_fill_actual , p=submit_CR)
    submit_observed = pymc.Binomial( 'submit_observed' , n=submit_actual, p=observe_rate, 
observed=15000)
 



Final results
Purchase CR (naive): 15k purchases / 100k visits = 15%

Purchase CR (implicit stats model): 16.7 purchases / 100k visits - 11% higher!

Rate of data loss = 10%

Data collection system to be fixed!

(But we can give customers more accurate numbers until that happens…)



Model your fundamental relationships
By understanding where the data comes from, you can build a model of how the 
data must fit together. 

- Enter CC before Form Submit. (Or “open email” before “click link in email”, 
“display ad” before “click ad”.)

Data which is present leaves clues to data which is missing.



Mislabeled 
data, 
inconsistent

 formats
And no one cares



Problem: Identify phishing and fraud
My phone: Google Pixel XL 2

My location: Mostly Bangalore, sometimes 
Hyderabad



Problem: Identify phishing and fraud
Attempted account access: this Nokia thing

Location: Jaipur

Does this seem right?



Brilliant plan
Flag phones that don’t match 
previous device used



(“Google”, “Pixel 2 XL”) != (“google Pixel”, “2”)
My device history:



People involved in 
getting the data fixed:

- Partners
- Bizdev
- Product managers
- Engineering



Mathematically model our bad data

Latent variable (unobservable) = actual 
underlying devices. 

Data (observable): Label = L(Device, Observer)

Data set:

[ User ID, Observer, L(Device, Observer) ]

My user history at Simpl



Time for linear algebra
Columns: (merchant, manufacturer, model) 
combinations

Row: 
user

Cell: 
An observation of a device string associated to a 
user.

Dimension: 
(# users) x (# device strings x merchants)

Incomplete matrix.

“Google” 
“Pixel 
XL 2”, “”, 
A

“iPhone 
X”, “”, A

“Google 
Pixel” 
“2”, “B”

“Google 
Pixel” 
“XL2”, 
“C”

“iPhone” 
“10”, “B”

1 0 1 NaN 0

1 0 NaN 1 0

0 1 0 NaN 1

1 1 1 NaN 0



Rank = # devices
Low rank matrix completion = classic problem in data science.

(But mostly only seen in recommendation engines.)



Low rank approximation
Each device corresponds to a row vector in 
low rank approximation.

Complete matrix using low rank approximation.

Observations not matching low rank 
approximation = possible attack.

“Google” 
“Pixel 
XL 2”, “”, 
A

“iPhone 
X”, “”, A

“Google 
Pixel” 
“2”, “B”

“Google 
Pixel” 
“XL2”, 
“C”

“iPhone” 
“10”, “B”

1 0 1 NaN 0

1 0 NaN 1 0

0 1 0 NaN 1

1 1 1 NaN 0

1 0 1 1 0

Google Pixel XL 2 vector



Mathematically like collaborative filtering
User = document

Device observation = word

Real world device (hidden variable) = 
topic

Possible attacker: a document that 
fits into multiple topics.

Sketch of solution

Topic model

Random errors/
attacks



# of users seen with both device string i and 
device string j



(These device vectors are similar but not 
identical to the ones in the prev slide. )



Collaborative filtering, simple version
1. Compute              - by construction must be sparse self-adjoint matrix of size 

O(N^2) + dense error term of size O(N). 
2. Apply thresholding - Truncate terms of size O(N) to zero.
3. Find eigenvectors. Eigenvectors of             = right singular vectors of M = 

device profile vectors 

In production:

1. For any given user, map their device string to a device vector.
2. Track devices associated to a user, i.e. user_id -> j.
3. If unexpected devices are seen, flag as potential fraud.



How we know it works
1. Reproduces results of some string matching fixes we did, e.g. 

“Google+Pixel”.replace(‘+’,’ ‘).lower() == “google pixel”.
2. Reproduces (“HMD Global”, _) ~ (“Nokia”, _) and (“Huawei, _) ~ (“Honor”, _).
3. Users with multiple devices are rare according to model, as expected. 

Get some nonsense results for device strings that have very few users.

This is fully expected from the model: O(N^2) ~ O(N) if N is small, so no clean 
value for threshold.

Hard for scammers to exploit this: need to identify users with rarely seen phones 
before they can attack. By definition such users are rare.



Delayed reactions
Act today, discover outcome 

tomorrow



Pervasive problem in real world
- Send email today. User checks their email tomorrow, clicks email.
- Lend money today. Payment due date end of month. Delinquency data 

available at end of month + 30 days.
- Buy stock today. Sell stock in 5-10 days. Only learn profit/loss at that time.

t=0
See visit

t=1
Measurement 
(biased)

t=2
Event occurs



Concrete version of the problem
A/B testing an email:

- “Valentines day sale, 2 days left!”
- “Only 2 days left to get your sweety something!”

Want to estimate click through rates of emails as quickly as possible, then send 
best version to everyone. 

Delay bias is introduced because people don’t open an email the instant it’s sent.



Background
Simple version of the problem: measuring a conversion rate.

No delay version: want to find conversion rate γ. One visitor reaches the 
site...and they convert! What is our opinion of the conversion rate?



Background
Simple version of the problem: measuring a conversion rate.

No delay version: want to find conversion rate γ. One visitor reaches the 
site...and they do not convert! What is our opinion of the conversion rate?



Background
Simple version of the problem: measuring a conversion rate.

No delay version: N visitors, k conversions.

Use previous two formulas recursively:



Background
Posterior after 794 impressions, 12 clicks.
Clustered around 12/794=0.015, as expected.



Adding in delays
If you send an email and it isn’t clicked in the next day, it might get read/clicked 
later. 

Important question you can answer: how long does it take before 5% / 50% / 90% 
of emails that will get clicked actually do?

Data set: 

Time lag between 
send/now for emails 
that received NO 
clicks.

Time lag between 
send/click for emails 
that did get clicked.



Survival models
Fact 1: An email is sent at 12:00:00. It’s now 12:00:30 and it has not been clicked. 
This tells us almost nothing about whether it will get clicked.

Fact 2: An email was sent at 12:00:00 Jan 1 2017. It’s now July 1 2019 and it has 
not been clicked. This tells us the email will probably never be clicked. 

Open question: What about at 12 hours, 24 hours, 72 hours, etc?



Survival models
The solution to this problem is called a survival model. Fasih Khatib already 
spoke about this.

Definition:

Goal of survival models: find r(t)

Intuitive interpretation: “If we know the email is eventually clicked, what are the 
odds it’s clicked before time t?” 



Survival models
Inverse survival curve:



Error correction
Now assume the email was sent at t=0, and it’s now time t. The email has not 
been clicked. The likelihood of this is:

We can do the same recursion as in the no delay case to get a moderately more 
complex formula.



Error correction



Error correction
Results of error correction.

Simulated data, true 
conversion rate was 25%, 
but  with lag the estimated 
conversion rate was lower. 



Error correction
Results of error correction.

Simulated data, same 
situation but waiting a 
longer time to measure 
CR.



Key idea
There are two major features influencing whether a user opens/clicks an email:

1. Conversion rate, i.e. how persuasively the subject/email is written.
2. Time - whether the user has actually checked their email.

If we ignore time, we lose accuracy and underestimate the true conversion rate.

By incorporating time into our model we can accurately measure it, albeit with 
greater uncertainty.



Self-Imposed Selection Bias
When the tails come apart



Selection is primary goal of many ML algos
But training data comes only from people selected:

- Find and display the ad with highest CTR: but only get data for ads which 
were displayed

- Identify the best borrowers, and lend money only to them. Performance data 
only available for loans which were issued

- Identify best students. Performance data only available for admitted students

Counterfactual is often unavailable!



Pernicious effects of 
selection bias

Consider two variables X and Y. 

These variables are clearly 
correlated with each other.

This is the early days of our 
model.

Regressor

P
er

fo
rm

an
ce



Pernicious effects of 
selection bias

Approve only the people that the 
model says is good.

Our model is working! 

Regressor

P
er

fo
rm

an
ce



Pernicious effects of 
selection bias

Our training data suddenly 
exhibits anti-correlation between 
X and Y! 

Regressor

P
er

fo
rm

an
ce



Height vs Performance in the (American) 
National Basketball Association



Publications among Ph.D. students



Heckman 
Correction
Pervasive problem in 

econometrics

Heckman received a Nobel Prize in 
Economics for a statistical 
methodology to solve this, but it’s 
hard to combine that with modern 
ML algos. Entirely based on normal 
distributions...

https://en.wikipedia.org/wiki/Heckman_correction
https://en.wikipedia.org/wiki/Heckman_correction


Heckman 
Correction
Pervasive problem in 

econometrics

Heckman received a Nobel Prize in 
Economics for a statistical 
methodology to solve this, but it’s 
hard to combine that with modern 
ML algos. Entirely based on normal 
distributions...

Open problem: How to use 
Heckman correction on NN 
or GBM? (Talk to me if you 
have ideas!)

https://en.wikipedia.org/wiki/Heckman_correction
https://en.wikipedia.org/wiki/Heckman_correction


The data is bad.
Deal with it.


