
The final stage of grief (about bad data)
is acceptance

Chris Stucchio
Director of Data Science @ Simpl

https://www.chrisstucchio.com

https://www.chrisstucchio.com

This talk is NOT
about

Data cleaning, data monitoring,
data pipeline management,

improving your data in any way.

This talk is about
Drawing correct inferences from

low quality data

A recipe for bad data
Ordinary data science

- Get reasonably clean data
- Do some cleaning, e.g.

cityname.lower()
- Train a predictive model (e.g. a

neural network, gradient
boosting) on the resulting data
set

Key idea of this talk

- Get unfixably dirty data.
- Identify latent/hidden variables

that the data is predictive of
- Build model to predict latent

variables
- Train your final model on the

latent variables.

Missing data

Funnel Analysis

Funnel analysis
requestID |Enter CC | Purchase

----------+-----------+----------

abc | 12:00 | 1:00

def | 12:01 | null

ghi | null | null

jkl | null | 1:03

Funnel analysis
requestID |Enter CC | Purchase

----------+-----------+----------

abc | 12:00 | 1:00

def | 12:01 | null

ghi | null | null

jkl | null | 1:03

User made purchase without filling in CC?

WTF is this? I don’t
even know?

Where does the data come from?
Tracking pixel sends request to our server whenever CC is entered...

Single server collecting thousands of data points per second…

Putting it into hundreds of SqlLite databases…

Stored on 4 disks…

= thousands of disk seeks+fsyncs/sec.

Engineer in me asks: “Is it possible that some data is getting lost?”

A recipe for bad data
Ordinary data science

- Take data as given
- df[‘purchase’]=~df[‘purc

hase_time’].isnull()
- Compute final conversion rate as

df[‘purchase’].mean()

Key idea of this talk

- Recognize that we lost records
of conversions that happened.

- Identify latent/hidden variables:
data loss rate, true number of
conversions.

- Build model to identify these
hidden variables

- Final model:
conversion_rate=true_con
versions / visits

Model the data generating process
P(enter CC) = A

P(purchase | enter CC) = B

P(event observed | event occurs) = D

First two probabilities are interesting to customers - funnel transition probabilities
(what we want to measure).

Third probability is interesting to us - how well our data collector works.

Data reported to us
100k unique visits

In 40k cases, we saw CC entered but no purchase

In 10k cases, we saw CC entered and purchase

In 5k cases, we saw no CC entered but still a purchase

Questions: What is the conversion rate? How many events are we losing?

Modeling the data
enter CC ← Binom(100,000 unique visits, P(Enter CC))

40k ← Binom(# enter cc, P(observed))

purchase ← Binom(# enter CC, P(submit | Enter CC))

15k ← Binom(# form submit, P(observed))

The green represents observable data and the red represents latent (hidden)
variables. Blue is what the customer wants to see.

Questions: What is the conversion rate? How many events are we losing?

PyMC to the rescue
model = pymc.Model()

with model:
 form_fill_CR = pymc.Uniform('form_fill_cr' , lower=0, upper=1)
 submit_CR = pymc.Uniform('submit_cr', lower=0, upper=1)
 observe_rate = pymc.Uniform(observed , lower=0, upper=1)

 form_fill_actual = pymc.Binomial('form_fill_actual' , n=100000, p=form_fill_CR)
 form_fill_obs = pymc.Binomial('form_submit_obs' , n=form_fill_actual , p=observe_rate,
observed=40000)

 submit_actual = pymc.Binomial('submit_actual' , n=form_fill_actual , p=submit_CR)
 submit_observed = pymc.Binomial('submit_observed' , n=submit_actual, p=observe_rate,
observed=15000)

Final results
Purchase CR (naive): 15k purchases / 100k visits = 15%

Purchase CR (implicit stats model): 16.7 purchases / 100k visits - 11% higher!

Rate of data loss = 10%

Data collection system to be fixed!

(But we can give customers more accurate numbers until that happens…)

Model your fundamental relationships
By understanding where the data comes from, you can build a model of how the
data must fit together.

- Enter CC before Form Submit. (Or “open email” before “click link in email”,
“display ad” before “click ad”.)

Data which is present leaves clues to data which is missing.

Mislabeled
data,
inconsistent

 formats
And no one cares

Problem: Identify phishing and fraud
My phone: Google Pixel XL 2

My location: Mostly Bangalore, sometimes
Hyderabad

Problem: Identify phishing and fraud
Attempted account access: this Nokia thing

Location: Jaipur

Does this seem right?

Brilliant plan
Flag phones that don’t match
previous device used

(“Google”, “Pixel 2 XL”) != (“google Pixel”, “2”)
My device history:

People involved in
getting the data fixed:

- Partners
- Bizdev
- Product managers
- Engineering

Mathematically model our bad data

Latent variable (unobservable) = actual
underlying devices.

Data (observable): Label = L(Device, Observer)

Data set:

[User ID, Observer, L(Device, Observer)]

My user history at Simpl

Time for linear algebra
Columns: (merchant, manufacturer, model)
combinations

Row:
user

Cell:
An observation of a device string associated to a
user.

Dimension:
(# users) x (# device strings x merchants)

Incomplete matrix.

“Google”
“Pixel
XL 2”, “”,
A

“iPhone
X”, “”, A

“Google
Pixel”
“2”, “B”

“Google
Pixel”
“XL2”,
“C”

“iPhone”
“10”, “B”

1 0 1 NaN 0

1 0 NaN 1 0

0 1 0 NaN 1

1 1 1 NaN 0

Rank = # devices
Low rank matrix completion = classic problem in data science.

(But mostly only seen in recommendation engines.)

Low rank approximation
Each device corresponds to a row vector in
low rank approximation.

Complete matrix using low rank approximation.

Observations not matching low rank
approximation = possible attack.

“Google”
“Pixel
XL 2”, “”,
A

“iPhone
X”, “”, A

“Google
Pixel”
“2”, “B”

“Google
Pixel”
“XL2”,
“C”

“iPhone”
“10”, “B”

1 0 1 NaN 0

1 0 NaN 1 0

0 1 0 NaN 1

1 1 1 NaN 0

1 0 1 1 0

Google Pixel XL 2 vector

Mathematically like collaborative filtering
User = document

Device observation = word

Real world device (hidden variable) =
topic

Possible attacker: a document that
fits into multiple topics.

Sketch of solution

Topic model

Random errors/
attacks

of users seen with both device string i and
device string j

(These device vectors are similar but not
identical to the ones in the prev slide.)

Collaborative filtering, simple version
1. Compute - by construction must be sparse self-adjoint matrix of size

O(N^2) + dense error term of size O(N).
2. Apply thresholding - Truncate terms of size O(N) to zero.
3. Find eigenvectors. Eigenvectors of = right singular vectors of M =

device profile vectors

In production:

1. For any given user, map their device string to a device vector.
2. Track devices associated to a user, i.e. user_id -> j.
3. If unexpected devices are seen, flag as potential fraud.

How we know it works
1. Reproduces results of some string matching fixes we did, e.g.

“Google+Pixel”.replace(‘+’,’ ‘).lower() == “google pixel”.
2. Reproduces (“HMD Global”, _) ~ (“Nokia”, _) and (“Huawei, _) ~ (“Honor”, _).
3. Users with multiple devices are rare according to model, as expected.

Get some nonsense results for device strings that have very few users.

This is fully expected from the model: O(N^2) ~ O(N) if N is small, so no clean
value for threshold.

Hard for scammers to exploit this: need to identify users with rarely seen phones
before they can attack. By definition such users are rare.

Delayed reactions
Act today, discover outcome

tomorrow

Pervasive problem in real world
- Send email today. User checks their email tomorrow, clicks email.
- Lend money today. Payment due date end of month. Delinquency data

available at end of month + 30 days.
- Buy stock today. Sell stock in 5-10 days. Only learn profit/loss at that time.

t=0
See visit

t=1
Measurement
(biased)

t=2
Event occurs

Concrete version of the problem
A/B testing an email:

- “Valentines day sale, 2 days left!”
- “Only 2 days left to get your sweety something!”

Want to estimate click through rates of emails as quickly as possible, then send
best version to everyone.

Delay bias is introduced because people don’t open an email the instant it’s sent.

Background
Simple version of the problem: measuring a conversion rate.

No delay version: want to find conversion rate γ. One visitor reaches the
site...and they convert! What is our opinion of the conversion rate?

Background
Simple version of the problem: measuring a conversion rate.

No delay version: want to find conversion rate γ. One visitor reaches the
site...and they do not convert! What is our opinion of the conversion rate?

Background
Simple version of the problem: measuring a conversion rate.

No delay version: N visitors, k conversions.

Use previous two formulas recursively:

Background
Posterior after 794 impressions, 12 clicks.
Clustered around 12/794=0.015, as expected.

Adding in delays
If you send an email and it isn’t clicked in the next day, it might get read/clicked
later.

Important question you can answer: how long does it take before 5% / 50% / 90%
of emails that will get clicked actually do?

Data set:

Time lag between
send/now for emails
that received NO
clicks.

Time lag between
send/click for emails
that did get clicked.

Survival models
Fact 1: An email is sent at 12:00:00. It’s now 12:00:30 and it has not been clicked.
This tells us almost nothing about whether it will get clicked.

Fact 2: An email was sent at 12:00:00 Jan 1 2017. It’s now July 1 2019 and it has
not been clicked. This tells us the email will probably never be clicked.

Open question: What about at 12 hours, 24 hours, 72 hours, etc?

Survival models
The solution to this problem is called a survival model. Fasih Khatib already
spoke about this.

Definition:

Goal of survival models: find r(t)

Intuitive interpretation: “If we know the email is eventually clicked, what are the
odds it’s clicked before time t?”

Survival models
Inverse survival curve:

Error correction
Now assume the email was sent at t=0, and it’s now time t. The email has not
been clicked. The likelihood of this is:

We can do the same recursion as in the no delay case to get a moderately more
complex formula.

Error correction

Error correction
Results of error correction.

Simulated data, true
conversion rate was 25%,
but with lag the estimated
conversion rate was lower.

Error correction
Results of error correction.

Simulated data, same
situation but waiting a
longer time to measure
CR.

Key idea
There are two major features influencing whether a user opens/clicks an email:

1. Conversion rate, i.e. how persuasively the subject/email is written.
2. Time - whether the user has actually checked their email.

If we ignore time, we lose accuracy and underestimate the true conversion rate.

By incorporating time into our model we can accurately measure it, albeit with
greater uncertainty.

Self-Imposed Selection Bias
When the tails come apart

Selection is primary goal of many ML algos
But training data comes only from people selected:

- Find and display the ad with highest CTR: but only get data for ads which
were displayed

- Identify the best borrowers, and lend money only to them. Performance data
only available for loans which were issued

- Identify best students. Performance data only available for admitted students

Counterfactual is often unavailable!

Pernicious effects of
selection bias

Consider two variables X and Y.

These variables are clearly
correlated with each other.

This is the early days of our
model.

Regressor

P
er

fo
rm

an
ce

Pernicious effects of
selection bias

Approve only the people that the
model says is good.

Our model is working!

Regressor

P
er

fo
rm

an
ce

Pernicious effects of
selection bias

Our training data suddenly
exhibits anti-correlation between
X and Y!

Regressor

P
er

fo
rm

an
ce

Height vs Performance in the (American)
National Basketball Association

Publications among Ph.D. students

Heckman
Correction
Pervasive problem in

econometrics

Heckman received a Nobel Prize in
Economics for a statistical
methodology to solve this, but it’s
hard to combine that with modern
ML algos. Entirely based on normal
distributions...

https://en.wikipedia.org/wiki/Heckman_correction
https://en.wikipedia.org/wiki/Heckman_correction

Heckman
Correction
Pervasive problem in

econometrics

Heckman received a Nobel Prize in
Economics for a statistical
methodology to solve this, but it’s
hard to combine that with modern
ML algos. Entirely based on normal
distributions...

Open problem: How to use
Heckman correction on NN
or GBM? (Talk to me if you
have ideas!)

https://en.wikipedia.org/wiki/Heckman_correction
https://en.wikipedia.org/wiki/Heckman_correction

The data is bad.
Deal with it.

