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A CATEGORICAL FOUNDATION FOR BAYESIAN

PROBABILITY

JARED CULBERTSON AND KIRK STURTZ

Abstract. Given two measurable spaces H and D with countably generated
σ-algebras, a perfect prior probability measure PH on H and a sampling dis-
tribution S : H → D, there is a corresponding inference map I : D → H

which is unique up to a set of measure zero. Thus, given a data measurement

µ : 1 → D, a posterior probability P̂H = I ◦ µ can be computed. This pro-
cedure is iterative: with each updated probability PH , we obtain a new joint
distribution which in turn yields a new inference map I and the process repeats
with each additional measurement. The main result uses an existence theorem
for regular conditional probabilities by Faden, which holds in more generality
than the setting of Polish spaces. This less stringent setting then allows for
non-trivial decision rules (Eilenberg–Moore algebras) on finite (as well as non
finite) spaces, and also provides for a common framework for decision theory
and Bayesian probability.

NB: This paper has been published in Applied Categorical Structures,
http://link.springer.com/article/10.1007/s10485-013-9324-9, please contact the
authors at jared.culbertson@us.af.mil for the correct reference.

1. Introduction

Bayesian probability is a subject that has proven very successful in prediction,
inference and model selection [3, 11, 12]. Čencov [21] gives a categorical foundation
for non-Bayesian statistical inference, but as far as the authors are aware, a categor-
ical framework for Bayesian probability has not been fully developed. Lawvere took
the first steps in this direction by defining the category of probabilistic mappings
in the unpublished manuscript [15]. Following this, Lawvere and Huber [16] gave a
seminar in Zurich on Bayesian Sections, further developing this category as a basis
for Bayesian probability. The first appearance in the literature was an expansion
of these ideas by Giry [10], who showed that the endofunctor on the category of
measurable spaces T : M → M associated to the probability adjunction given by
Lawvere forms a monad, and that Lawvere’s category of probabilistic mappings is
the Kleisli category of that monad.

Subsequently, Meng [17], examined the category of convex sets and affine linear
maps, which can be shown to be equivalent to the category of Eilenberg–Moore
algebras of the Giry monad. This category can be thought of as the category of
“decision rules” since the objects of that category are certain measurable functions
TX → X whose fibers partition the space of probability measures on a given space
X into positive convex measurable sets.1 Based on the work by Giry restricting the
monad to Polish spaces, Doberkat[7, 5] has since characterized the Eilenberg–Moore

1Doberkat [6] refers to this process of making decision rules as derandomization, which in
certain applications like probabilistic semantics may be a more appropriate terminology.
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T -algebras for these topological spaces. That work, however, was based upon giving
the space of probability measures the σ-algebra generated by the weak topology
(as used for the Polish space monad) which results in (nontrivial) finite spaces
having no T -algebras. In the final section, we show that this negative result can
be circumvented by avoiding topological conditions and using the initial σ-algebra
generated by the evaluation maps. Others, including Wendt [22], van Breugel [4]
and Abramsky–Blute–Panangaden [1] have also studied similar constructions.

Central to the study of Bayesian probability is the existence of regular condi-
tional probabilities. Many textbooks restrict to Polish spaces in order to prove this
existence (e.g., see [8]), though this is not a strictly necessary condition. Several
more general characterizations of conditions which guarantee the existence of regu-
lar conditional probabilities have been found, either restricting the spaces involved
or the joint distributions which are allowed. In [18], Pachl does not require even
countably generated σ-algebras, but relies instead on a certain notion of compact-
ness. We will prefer to follow [9], where Faden gives a necessary and sufficient
condition when we restrict to countably generated spaces. Namely, the marginals
of a joint distribution must give perfect measure spaces. The class of perfect mea-
sures is broad and includes, for example, all Radon measures. For this reason, we
will only consider perfect measures and begin by showing that the Giry monad
restricted to perfect probability measures is still a monad (this is straightforward
based on Theorem 2.2). Note that everything prior to Section 3.2 holds without
restricting to perfect probability measures (see [10]).

The main theorem (Theorem 4.1) states that inference maps are uniquely de-
termined by a prior probability and a sampling distribution. This result follows
from the existence of regular conditional probabilities, and we restate an existence
theorem (Theorem 3.1) of Faden [9]. Using our characterization of Bayesian proba-
bility and the well-known fact that the Kleisli category embeds into the category of
T -algebras, we can then see that the category of decision rules provides a common
framework for both decision theory and Bayesian probability. Some of these ideas
are similar in spirit to the general notion of distributions based on commutative
monads found in the recent paper of Kock [13].

2. The Category of Perfect Probabilistic Mappings

We begin with an overview of the category of perfect probabilistic mappings,
which is a slight modification of Lawvere’s category (see [15]) of probabilistic map-
pings. The restrictions to have countably generated spaces as objects and restrict
to perfect probability measures in the definition of the morphisms are required to
ensure the existence of regular conditional probabilities, but are otherwise unneces-
sary. We include these restrictions throughout the paper to avoid overcomplicating
the statements of the main theorems. See the introduction for a discussion of al-
ternative definitions. Most of the following fundamental results are widely known
without the restriction to perfect measures, and we indicate where the usual ar-
guments must be modified due to this additional constraint. We also review the
definition and foundational properties of perfect probability measures.

Let us fix the following notation. We will denote the σ-algebra of a measurable
space X by ΣX , and the category of countably generated measurable spaces and
measurable functions by Mcg. For an object (X,ΣX) in Mcg we will often drop
the associated σ-algebra from the notation and denote it simply by X when the
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σ-algebra is obvious or inconsequential. We will use (1,Σ1) and (2,Σ2) for the
one-element and two-element measurable sets with the discrete σ-algebras, but we
will similarly just write “1” or “2” when these are used as objects in some category.

Definition 2.1. A measure space (X,Σ, µ) is called perfect if for any measurable
function f : X → R, there exists a Borel set E ⊂ f(X) such that µ(f−1(E)) =
µ(X). A family {µi}i∈I of measures on X is equiperfect if given f as before, there
exists a single Borel set E ⊂ f(X) with µi(f

−1(E)) = µi(X) for all i ∈ I.

The following theorem collects many basic results about perfect probability mea-
sures. We refer the reader to [19] and [9] and the references therein for proofs and
more details on perfect measures.

Theorem 2.2. Let (X,ΣX) and (Y,ΣY ) be measurable spaces. Then

(a) if P is a {0,1}-valued probability measure, then P is perfect
(b) if P and Q are probability measures on X such that Q ≪ P , then Q is

perfect,
(c) if Σ′

X ⊂ ΣX and a probability measure P on X is perfect, then P restricted
to Σ′

X is perfect,
(d) if f : X → Y is a measurable function and a probability measure P on X

is perfect, then f∗P is a perfect probability measure on Y ,
(e) if J is a probability measure on (X × Y,ΣX ⊗ ΣY ) with marginals P and

Q, then J is perfect if and only if P and Q are perfect,
(f) if f : X×ΣY → [0, 1] is measurable for each fixed B ∈ ΣY and P is a perfect

probability measure on X, then the probability measure on Y defined by
Q(B) =

∫
X
Q(x,B) dP is perfect if and only if {f(x, ·)}x∈X is an equiperfect

family of probability measures on Y except on a P -null set.

Definition 2.3. The category of perfect probabilistic mappings P has countably
generated measurable spaces (X,ΣX) as objects and an arrow between two such
objects f : (X,ΣX) → (Y,ΣY ) consists of a function f : X × ΣY → [0, 1] such that

(i) for all B ∈ ΣY , the function f(·, B) : X → [0, 1] is measurable,
(ii) the collection {f(x, ·) : ΣY → [0, 1]}x∈X is an equiperfect family of proba-

bility measures on Y .

That is, morphisms in P can be thought of as parametrized families of perfect
probability measures that vary measurably. For an arrow f : (X,ΣX) → (Y,ΣY )
we will often denote the function f(·, B) : X → [0, 1] by fB and the function
f(x, ·) : ΣY → [0, 1] by fx.

Given two arrows

(1) (X,ΣX)
f
−→ (Y,ΣY )

g
−→ (Z,ΣZ)

the composition g ◦ f : X × ΣZ → [0, 1] is defined by

(2) (g ◦ f)(x,C) =

∫

y∈Y

gC(y)dfx.

This composition is well-defined due to Theorem 2.2 (f), and associativity follows
easily from the monotone convergence theorem. An important fact is that every
measurable function f : X → Y may be regarded as a P-morphism δf : X → Y ,
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where the Dirac (or one point) measure

(3) δf (x,B) =

{
1 if f(x) ∈ B

0 if f(x) /∈ B

assigns to each x ∈ X the Dirac measure on Y which is concentrated at f(x). Taking
the measurable function f to be the identity map on a particular measurable space
X gives the arrow δIdX

: (X,ΣX) → (X,ΣX), i.e., the identity arrow for X in
P . In fact, it is easy to check that the association f 7→ δf determines a functor
δ : Mcg → P taking a measurable space to itself. Note that this functor is not
faithful, however, and so we do not get an embedding of Mcg into P . We will call
a P arrow P : X → Y deterministic if for every B ∈ ΣY the measurable functions
PB : X → [0, 1] assume only the values 0 or 1. In fact, every deterministic P-arrow
P : X → Y is of the form P = δf for some measurable function f , provided that X
has cardinality below the cardinality of the set of all measurable sets.

The following lemma gives two useful properties which follow easily from stan-
dard exercises in measure theory and the definition of composition in P .

Lemma 2.4. If p : X → Y is a measurable function and f : Y → Z a P-morphism,
then the composition

X Y Z
δp f

is given by (f◦δp)(x,C) = fp(x)(C). On the other hand, if q : Y → Z is a measurable
function and g : X → Y a P-morphism, then the composition

X Y Z
δqg

is given by (δq ◦ g)(x,C) = gx(q
−1C).

There are several distinguished objects in P that play an important role in many
constructions. Any set X with the indiscrete σ-algebra ΣX = {X, ∅} is a terminal
object since any arrow P : Y → X is completely determined by the fact that Py

must be a probability measure on X . We denote the canonical terminal object by
1 since it is isomorphic to the one-element set. Notice that an arrow P : 1 → X
is precisely a perfect probability measure on X and that 1 is a separator for P .
In addition to having a separator, the category P also has a coseparator, the two-
element set 2 = {⊤,⊥} with Σ2 the discrete algebra on 2. Moreover, there is a set
bijection homP(X, 2) ≃ homMcg

(X, [0, 1]).
We briefly show how the Giry monad factors through P . Let PX denote the set

of perfect probability measures onX , endowed with the coarsest σ-algebra such that
the evaluation maps evB : PX → [0, 1] given by evB(P ) = P (B) are measurable.
Then we can define a functor P : P → Mcg which sends a measurable space X
to the space PX of probability measures on X . On arrows, P sends the P-arrow
f : X → Y to the measurable function Pf : PX → PY defined pointwise on ΣY by

(4) Pf(P )(B) =

∫

X

fB dP.
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That is, Pf(P ) gives the probability measure on Y defined by the composition

(5)

1 X Y
P f

f ◦ P

in P . Since PX = homP (1, X) as sets, another common notation for PX is X1,
but we will use the functor notation for clarity.

In fact, PX is an important object in P as well, and based on the definition
of the σ-algebra on PX , we can define the evaluation morphism εX : PX → X by
εX(P,A) = P (A). With this, we are able to characterize the relationship between
Mcg and P , first proved in [10] for general measurable spaces and probability mea-
sures. To see that this proof goes through when restricting to countably generated
spaces and perfect measures, we only need to observe that the σ-algebra defined
above for PX is countably generated when X is countably generated and that
pushforwards take perfect measures to perfect measures.

Theorem 2.5. The functors δ : Mcg → P and P : P → Mcg form an adjunction

Mcg P
δ

P

δ ⊣ P

with the unit of the adjunction ηX(x) = δ{x} and the counit εX : PX → X.

Thus, we can realize the Giry monad as the composition T = P ◦ δ, and more-
over, P is equivalent to the smallest category through which T factors—i.e., it is
equivalent to the Kleisli category K(T ) of the Giry monad. Hence every P arrow
P : X → Y corresponds uniquely to a measurable arrow X → TY .

3. Joint Distributions and Conditionals

Given a family of objects {Xi}i∈I we can form the cartesian product
∏

i∈I Xi

and endow this set with the product σ-algebra generated by all the projection maps∏
i∈I Xi

πj

−→ Xj , one for each index j ∈ I. It is easy to see that

(6)

((
∏

i∈I

Xi,
⊗

i∈I

ΣXi

)
, {δπi

}i∈I

)

does not give a categorical product. In fact, only weak products and equalizers
exist in P , as the uniqueness condition fails for both constructions. We use the
terminology “product space” to denote the set product of any family {(Xi,ΣXi

)}i∈I

of objects with the product σ-algebra and not to imply that that object
(
∏

i∈I

Xi,
⊗

i∈I

ΣXi

)

with projections satisfies any universality condition. We will call a probability
measure J : 1 → (

∏
i∈I Xi,⊗i∈IΣXi

) on a product space a joint distribution. We
do not mean to imply that these are distributions of a random variable, but rather
indicate a measure on a product space which is not necessarily a product measure.
These joint distributions are the main objects of study in Bayesian probability.
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Given any joint distribution J : 1 →
∏

i∈I Xi, for each j ∈ I we have the diagram

(7)

1

Xj

∏
i∈I Xi

J

δπj

δπj
◦ J

where the composite δπj
◦J is called the marginal (distribution) of J on component

Xj and is given by (δπj
◦ J)(Aj) = J(π−1

j Aj) by Lemma 2.4.

Given only the probability measures on the components, {Pi}i∈I , there are many
joint distributions on the product space whose marginals are the given family
{Pi}i∈I . By using relationships in the form of conditionals between the compo-
nents, we bring into play additional knowledge that permits the determination of
the appropriate joint distribution. If the uncertainty of componentXj , as expressed
by a probability measure Pj on component Xj , depends conditionally on a parame-
ter which varies over component Xi then we have the P arrow h : Xi → Xj. These
conditionals—which are the morphisms in P—are the key to determining a unique
joint distribution. The relationship between the components Xi and Xj is mediated
by the conditional h and expresses the relationship Pj = h ◦ Pi.

3.1. Constructing a Joint Distribution Given Conditionals. We now show
how marginals and conditionals can be used to determine joint distributions in P .
This development follows that of [1] where we first learned of this approach (the
category Stoch of stochastic kernels in that paper is nearly what we call P , although
our restriction to countably generated spaces and perfect measures is replaced in
the paper by restricting to Polish spaces). Given a P-arrow h : X → Y and a
perfect probability measure PX : 1 → X on X , consider the diagram

(8)

1

X YX × Y

PX

δπX
δπY

Jh

h

where Jh is the uniquely determined joint distribution on the product space X×Y
defined on the rectangles of the σ-algebra ΣX ⊗ ΣY by

(9) Jh(A×B) =

∫

A

hB dPX .

Then it follows from Theorem 2.2 that Jh is perfect. The marginal of Jh with
respect to Y then satisfies δπY

◦Jh = h◦PX and the marginal of Jh with respect to
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X is PX , both of which are also perfect. By a symmetric argument, if we are given
a probability measure PY and conditional probability k : Y → X then we obtain
a unique perfect joint distribution Jk on the product space X × Y given on the
rectangles by

(10) Jk(A×B) =

∫

B

kA dQ.

However, if we are given PX , PY , h, k as indicated in the diagram

(11)

1

X Y

X × Y
PYPX

δπX
δπY

JkJh

h

k

then we have that Jh = Jk if and only if the compatibility conditions

(12)
PX = k ◦ PY

PY = h ◦ PX

are satisfied. Thus if the compatibility conditions are satisfied, then we can realize
the product rule of probability in P as

(13)

∫

A

hB dPX = J(A×B) =

∫

B

kA dPY .

In the extreme case, suppose we have a P-arrow h : X → Y which factors through
the terminal object 1 as

(14)
X Y

1

h

! Q

where ! represents the unique arrow fromX → 1. If we are also given a perfect prob-
ability measure P : 1 → X , then we can calculate the joint distribution determined
by P and h = Q◦! as

(15)
J(A×B) =

∫
A
(Q◦!)B dP

= P (A) ·Q(B)

so that J = P⊗Q. This is precisely the situation where we say that the marginals P
and Q are independent. Thus in P independence corresponds to a special instance
of a conditional—one that factors through the terminal object.

3.2. Constructing Regular Conditionals given a Joint Distribution. The
following result is the basis from which the inference maps in Bayesian probability
theory are subsequently constructed. The proof of the following theorem can be
found in [9], where several equivalent conditions are identified.
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Theorem 3.1. If J : 1 → X × Y is a P-morphism with marginals PX on X and
PY on Y , then there exists a P-arrow f that makes the diagram

(16)

1

YX

PYPX

f

commute and satisfies

(17) J(A×B) =

∫

B

fA dPY .

Moreover, the morphism f is the unique P-morphism with these properties, up to
a set of PY -measure zero.

Interestingly, we can use Theorem 3.1 to obtain a seemingly stronger statement,
i.e., that the regular conditional probability factors through the product. Though
this is not difficult to prove, we will prefer this stronger statement in the sequel.

Theorem 3.2. If J : 1 → X × Y is a P-morphism with marginal distributions PX

and PY on X and Y , then there exist P arrows f and g such that the diagram

(18)

1

YX

X × Y PYPX

J

δπY
δπX

δπX
◦ f

fg

δπY
◦ g

commutes and

(19)

∫

A

(δπY
◦ g)B dPX = J(A×B) =

∫

B

(δπX
◦ f)A dPY .

Proof. We can apply Theorem 3.1 to see that there is a P-arrow f : Y → X × Y
satisfying J = f ◦ PY such that

(20)

∫

C

fA×B dPY = J (A× (B ∩ C)) .

Then from Lemma 2.4, we know that (δπX
◦ f)(y,A) = f(y,A× Y ) and so

∫

B

(δπX
◦ f)A dPY =

∫

B

fA×Y dPY(21)

= J (A× (Y ∩B))(22)

= J(A×B)(23)
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Similarly we obtain a P-arrow g : X → X × Y satisfying J = g ◦ PX and

(24)

∫

A

(δπY
◦ g)B dPX = J(A×B).

With these facts, it is a simple exercise to check that the diagram commutes. �

Note that if the joint distribution J is obtained by a probability measure PX

and a conditional h : X → Y using the method described by Diagram 8, then using
the above result and notation it follows PX -a.s. that h = δπY

◦ g.

Remark 3.3. (Tonneli’s Theorem) Given a P-morphism J : 1 → X × Y , with
marginals PX and PY let γ : X → X × Y and ϕ : Y → X × Y be the P arrows
satisfying γ◦PX = J and ϕ◦PY = J whose existence is guaranteed by Theorem 3.2.
Given any measurable function F : X × Y → [0, 1] we have the diagram

(25)

1

YX X × Y

2

PYPX

δπY
δπX

φγ

J

Ff = F ◦ γ g = F ◦ ϕ

where the top two triangles commute. Thus we can define f = F ◦ γ and g = F ◦ϕ
so that the entire diagram commutes. From this, it follows that

(26)

∫

X

f dPX =

∫

X×Y

F dJ =

∫

Y

g dPY

and we can realize Tonneli’s Theorem as the special case with J = PX ⊗ PY .

This formulation provides the context for the following optimal transportation
problem: given marginals PX and PY that model the supply and demand con-
straints, and a cost function F (defined up to a scalar constant) representing the
unit cost to transport a product from x ∈ X to y ∈ Y , what joint distribution J
on X×Y with marginals PX and PY minimizes the objective function

∫
X×Y

F dJ?
The optimal assignment is then the conditional probability X → Y determined by
the optimal joint distribution J . For example, this problem is investigated and a
unique solution is given in certain cases in [14].

4. Bayesian probability in P

If we replace X and Y in Diagram 18 by D(ata) and H(ypotheses), and the
composites δπY

◦ g by S(ampling distribution) and δπX
◦ f by I(nference), then we
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can define PD = S ◦ PH to obtain

(27)

1

H D

PH PD

S

I

.

In the context of Bayesian probability the probability measure PH is often called a
prior probability.

In this notation, the product rule in P given in Equation 13 becomes

(28)

∫

D

IH dPD = J(H×D) =

∫

H

SD dPH

where H ∈ ΣH and D ∈ ΣD. We will spend the remainder of this sections showing
how this interpretation of these spaces in P provides a categorical foundation for
Bayesian probability. First, we briefly review the fundamental concepts in Bayesian
probability theory which can be found in [12] and then proceed to show how P is
the appropriate category for this theory. Generally, a Bayesian model is comprised
of a number of items including

(i) two measurable spaces H and D representing hypotheses and data, respec-
tively,

(ii) a probability measure PH on the H space called the prior probability,
(iii) a P arrow S : H → D called the sampling distribution,
(iv) a P arrow I : D → H called the inference map,

Note that the data space D can also be thought of as the event space for some ex-
periment, and the σ-algebra on D is determined by distinguishable data. The prior
probability measures are updated via the inference map as one takes measurements,
which correspond to probability measures µ on D. These updated probability mea-

sures are then called posterior probabilities and are given by P̂H = I ◦ µ. The

posterior P̂H then becomes the prior probability for the next step and the process
continues as more measurements are taken. At each step in a Bayesian process, the
posterior probability is a representation of knowledge about the hypotheses based
on all of the data that has been accumulated up to that point.

Using the sampling distribution S and the prior probability PH on H , we can
define a joint distribution J on the product spaceH×D as in Section 3.1 by defining
it on the rectangles as J(A× B) =

∫
A
SB dPH . The D-marginal (prior probability

on data) is then PD = S ◦PH = δπD
◦J . Using Theorem 3.2, we have the following

theorem.

Theorem 4.1. Given P arrows representing a prior probability PH : 1 → H and
a sampling distribution S : H → D, the inference map I : D → H is determined
uniquely up to a set of PD-measure zero.

Proof. Let I : D → H be the composition δπH
◦ f , where δπH

is the projection
H ×D → H and f : D → H ×D is the P-arrow satisfying

(29) J(U × V ) =

∫

D

fU×V dPD



A CATEGORICAL FOUNDATION FOR BAYESIAN PROBABILITY 11

whose existence is given by Theorem 3.2. Thus

(30)

∫

A

SB dPH = J(A×B) =

∫

B

IA dPD

and this inference arrow I is unique in that if I ′ also satisfies equation 30 then the
set {y ∈ Y | Iy 6= I ′

y} has PD-measure zero. �

Thus the complete process works in the following way. A prior probability PH

and sampling distribution S are specified, from which one determines the inference
map I. Once measurements µ : 1 → D are taken, we then calculate the posterior
probability by I ◦µ. This updating procedure can be characterized by the diagram

(31)

1

H D

PH µ

S

I

I ◦ µ

where the solid lines indicate arrows given a priori, the dotted line indicates the
arrow determined using Theorem 3.2, and the dashed lines indicate the updating
after a measurement. Note that if there is no uncertainty in the measurement, then
µ = δ{x} for some x ∈ D, but in practice there is usually some uncertainty in the
measurements themselves.

Following the calculation of the posterior probability, the sampling distribution
is then updated, if required. The process can then repeat: using the posterior
probability and the updated sampling distribution the updated joint probability
distribution on the product space is determined and the corresponding (updated)
inference map determined. We can then continue to iterate as long as new mea-
surements are received. For some problems (such as with the standard urn problem
with replacement of balls) the sampling distribution does not change from iterate
to iterate, but the inference map is updated since the posterior probability on the
hypothesis space changes with each measurement. The model selection problem
(either once at the beginning of this process, or iteratively throughout) can also
be modeled as a meta-Bayesian process, where the hypothesis space is the space of
potential models and the data constitutes some information that would inform on
the suitability of a given model.

Remark 4.2. We know from Theorem 4.1 that the inference map I is uniquely
determined by PH and S up to a set of PD-measure zero. However, there is no
reason a priori that a measurement µ : 1 → D is required to be absolutely continuous
with respect to PD. In µ is not absolutely continuous with respect to PD, then a
different choice of inference map I ′ could yield a different posterior probability—
i.e., we could have I ◦ µ 6= I ′ ◦ µ. Thus we make the assumption that measurement
probabilities on D are absolutely continuous with respect to the prior probability PD

on D. This is a reasonable assumption, however, since if a data event is impossible
(has PD-measure zero) under a certain model, then the model should not be expected
to make an meaningful inference when presented with that data. On the other hand,
it is easy to see that if a measurement µ ≪ PD, then I ◦ µ ≪ PH , as expected.
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We emphasize that this procedure can be employed for any perfect prior prob-
ability and any regular conditional probability. For example, given a perfect prior
P : 1 → PX and the conditional εX : PX → X there corresponds a unique inference
map I : X → PX satisfying, for all A ∈ ΣX and for all B ∈ ΣPX ,

(32)

∫

PX

εXA dP =

∫

X

IB d(εX ◦ P ).

In the case where X = 2 = {⊤,⊥} (the two element set), these “higher order
distributions” P : 1 → P2 can be used to explicate the concept of Ap distributions
as characterized by Jaynes [12, Chapter 18]. Using our notation, a proposition
A, which is a morphism A : 1 → 2 in the category Set of sets, has an associated
probability of truth, say Pr(A) = p. Hence A determines a P-morphism A : 1 → 2,
with A({⊤}) = p. The information supplied by the arrow A consists only of the
single value p and fails to indicate how sensitive this proposition is to additional
data. The confidence that one has in the value p can be supplied by the higher
order distributions which are probability measures on the space P2 of probability
measures on 2. Since P2 consists precisely of the Bernoulli distributions Bθ =
θδ⊤ + (1 − θ)δ⊥, where θ ∈ [0, 1], it follows that P2 ≃ [0, 1]. Consequently, any
distribution

(33) 1
Ap

−−→ P2

has an expected value which can be calculated using the composition

(34) 1
Ap

−−→ P2
ε2−→ 2.

Thus E(Ap) = (ε2 ◦ Ap)({⊤}) = p and any such distribution provides a more
informative measure. For example, the two distributions on P2 ≃ [0, 1] specified
by p = δ 1

2

and p′ the uniform (Lebesque) measure both have expected value 1
2 .

Yet clearly, the first is deterministic, expressing a (complete) confidence in the
statement that the expected value of the proposition

(35) 1
A

−−→ 2

where A(⊤) = 1
2 is 1

2 . On the other hand, the distribution p′ also determines A,
but instead expresses a maximal ignorance modeled by the uniform distribution.

5. The Category of Decision Rules

Recall that the Giry monad T factors through P via the adjunction of Theo-
rem 2.5. At the other end of the spectrum of categories through which the Giry
monad factors is the Eilenberg–Moore category MT

cg, consisting of the Eilenberg–
Moore algebras of the Giry monad. From the theory of monads (see [2], for exam-
ple), we know that P then embeds into MT

cg, which has additional structure that
is useful for dealing with other aspects of probability theory and decision making
which P is not equipped for. Let us briefly recall the definition of a T -algebra.
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If (T, η, µ) is a monad in a category C, a T -algebra (X,α) is a pair consisting of
an object X in C and a C arrow α : TX → X such that the diagrams

(36)

T 2X

TX

TX

X

Tα

µX

α

α

X TX

X

α

ηX

Id

commute; the first diagram is called the associative law and the second diagram

the unit law. A morphism of T -algebras (X,α)
f

−→ (Y, β) is an arrow f : X → Y
of C such that the diagram

(37)

TX TY

X Y

Tf

βα

f

commutes.
When T is the Giry monad, an algebra TX

α
−→ X consists of a measurable

space X with a countably generated σ-algebra, the space TX = PX of probability
measures on X , and a measurable map α satisfying the two defining properties of a
T -algebra. The measurable map Tf in the definition of a morphism of T -algebras is
the pushforward map: given P ∈ TX the pushforward by f is Tf(P ) = f∗P ∈ PY .

The T -algebras (X,α) are often called decision rules since the measurable map α
assigns (decides) a value in X to each probability measure P on X . Alternatively,
we can think of a decision rule as collapsing a probability distribution to a definite
value, or derandomizing a probability distribution as in [6]. For this reason, we
often use the descriptive characterization of Čencov [21] and call the category MT

cg

the category of decision rules.2

Embedding the main consequence of the existence of regular conditional proba-
bilities for Bayesian probability into MT

cg, we have the following.

Theorem 5.1. Given a measurable function S : H → TD, there exists a measurable
function I : D → TH such that Î = µH ◦ I is a retraction of Ŝ = µD ◦TS in Mcg.

2Čencov did not work in MT
cg, but rather in P, restricting to measurable spaces X such that

PX has a σ-algebra generated by finitely many atoms. The primary difference in the current
approach and that of Čencov is that we take a Bayesian viewpoint, while he is attempting to
describe the standard statistical inference perspective.
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Proof. This follows immediately from Theorem 4.1 and the embedding of P into
MT

cg and can be summarized in the diagram

(38) TH

T 2D

TD

T 2H

TS µD

TIµH

Ŝ

Î

.

�

One of the primary advantages to using the existence of regular conditional prob-
abilities guaranteed by Theorem 3.2 is that we only require that measurable spaces
have countably generated σ-algebras and that the measures are perfect. In con-
trast, much of the previous work involving the Giry monad and regular conditional
probabilities requires resorting to topological arguments and restricting to Polish
spaces. For example, in [5], Doberkat characterizes the T -algebras for the Giry
monad under the Polish space assumption, and proves the counter-intuitive result
that there are no non-trivial decision rules for finite spaces in MT

cg. In contrast,
we exhibit a finite space having a T -algebra when one does not require topological
restrictions.

Example 5.2. An important such case is the decision rule d : T 2 → 2 given by

(39) d(P ) =

{
⊤ if P ({⊤}) = 1

⊥ if P ({⊤}) < 1.

The function d is measurable since d−1({⊤}) = {δ⊤} ∈ ΣT2. The associativity
identity

(40)

T 22 T 2

T 2 2

Td

dµ2

d

Q Qd−1

µ2(Q) d(µ2(Q)) = d(Qd−1)

Td

dµ2

d

where µ is the monad multiplication defined by

(41) µ2(Q)(A) =

∫

q∈T (2)

evA(q) dQ,

is satisfied since both routes map the element Q 6= δδ⊤ ∈ T 2(2) 7→ ⊥ while δδ⊤ 7→ ⊤.
The unit law Id2 = d ◦ η2 is trivial to verify.

The decision rule d : T 2 → 2 partitions the space T 2 into δ⊤ and all measures on
2 whose value on {⊤} is of measure less than one. There are many other decision
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rules for 2, and any other finite or nonfinite space. Characterizing decision rules
without the requirement for continuity is an open problem.
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