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Abstract

Label shift refers to the phenomenon where the
prior class probability p(y) changes between the
training and test distributions, while the con-
ditional probability p(x|y) stays fixed. Label
shift arises in settings like medical diagnosis,
where a classifier trained to predict disease given
symptoms must be adapted to scenarios where
the baseline prevalence of the disease is differ-
ent. Given estimates of p(y|x) from a predictive
model, Saerens et al. (2002) proposed an efficient
EM algorithm to correct for label shift that does
not require model retraining. A limiting assump-
tion of this algorithm is that p(y|x) is calibrated,
which is not true of modern neural networks. Re-
cently, Black Box Shift Learning (BBSL) (Lip-
ton et al., 2018) and Regularized Learning un-
der Label Shifts (RLLS) (Azizzadenesheli et al.,
2019) have emerged as state-of-the-art techniques
to cope with label shift when a classifier does not
output calibrated probabilities. However, both
BBSL and RLLS require model retraining with
importance weights, which poses challenges in
practice (Byrd and Lipton, 2019), and neither has
been benchmarked against EM. Here we show
that by combining EM with a type of calibration
we call bias-corrected calibration, we outperform
both BBSL and RLLS across diverse datasets and
distribution shifts. We further show that the EM
objective is concave and bounded, and introduce
a theoretically principled strategy for estimating
source-domain priors that improves robustness to
poor calibration. This work demonstrates that EM
with appropriate calibration is a formidable and
efficient baseline that future work in label shift
adaptation should be compared against.
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1. Introduction

Imagine we train a classifier in country A to predict whether
or not a person has a disease based on observed symptoms,
and that we hope to deploy this classifier in country B,
which has poorer access to healthcare. If the prevalence of
the disease in country B is higher in than in country A, the
classifier might systematically misdiagnose people as not
having the disease. How can we adapt the classifier to cope
with the difference in the baseline prevalence of the disease
in the two countries?

Formally, let y denote our labels (e.g. whether or not a per-
son is diseased), and let  denote the observed symptoms.
Let us denote the joint distribution (, y) in country A (our
“source” domain) as PP, and let us denote the distribution in
country B (our “target” domain, where we do not have la-
bels) as Q. How can we adapt a classifier trained to estimate
p(y|x) (the conditional probability in distribution IP) so that
it can instead estimate g(y|x) (the conditional probability
in distribution Q)? Absent assumptions about the nature
of the shift between P and Q, this problem is intractable.
However, if the disease generates similar symptoms in both
countries, we can assume that p(x|y) = ¢(x|y), and that
the shift in the joint distribution ¢(x,y) is due to a shift
in the label proportion ¢(y). Formally, we assume that
q(x,y) = p(x|y)q(y). This is known as label shift or prior
probability shift (Amos, 2008), and it corresponds to anti-
causal learning (i.e. predicting the cause y from its effects x)
(Schoelkopf et al., 2012). Anti-causal learning is appropri-
ate for diagnosing diseases given observations of symptoms
because diseases cause symptoms.

Given estimates of p(y) and p(y|x), Saerens et al. (2002)
proposed a simple Expectation Maximization (EM) proce-
dure to estimate ¢(y) without needing to estimate p(x|y).
However, estimates of p(y|x) derived from modern neu-
ral networks are often poorly calibrated (Guo et al., 2017),
and the lack of calibration can decrease the effectiveness
of EM. As an alternative, Lipton et al. (2018) developed a
technique called Black Box Shift Learning (BBSL) that can
work even when the predictions p(x|y) are not calibrated.
Azizzadenesheli et al. (2019) further improved upon BBSL
in a technique known as Regularized Learning under Label
Shifts (RLLS). Both BBSL and RLLS leverage informa-
tion in a confusion matrix calculated on a held-out portion
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of the training set. To our knowledge, neither BBSL nor
RLLS have been benchmarked against EM. Moreover, both
BBSL and RLLS require model retraining using importance
weighting, which does not work not as well as expected with
deep neural networks (Byrd and Lipton, 2019), and RLLS
also relies on a regularization hyperparameter. Conversely,
EM requires neither retraining nor hyperparameter tuning.

Although the EM approach is limited by the assumption that
the predictions p(y|x) are calibrated, a number of recent
techniques have been proposed to correct for miscalibration
of p(y|x) using a held-out portion of the training set (Guo
etal., 2017). The held-out set can be thought of as analogous
to the held-out set used in BBSL and RLLS to calculate a
confusion matrix. This suggests a simple yet novel hybrid
algorithm for adapting to label shift: first, calibrate predic-
tions using the held-out training set, then perform domain
adaptation on the calibrated predictions using EM. In this
work, we studied the effectiveness of this hybrid algorithm.
More generally, we studied the impact of calibration on
domain adaptation to label shift.

1.1. Our Contributions

1. In experiments on MNIST, CIFAR10/CIFAR100, and
Diabetic Retinopathy Detection, we found that EM
achieves state-of-the-art results when used with an
appropriate calibration approach. Although BBSL and
RLLS both benefit from calibration, they did not tend
to outperform EM when the probabilities were well-
calibrated.

2. We observed that the popular calibration approach of
Temperature Scaling (TS) (Guo et al., 2017) does not
tend to achieve the best results in the context of adap-
tation to label shift, possibly owing to large systematic
biases in the calibrated probabilities (Fig. 1). The best
results are obtained using variants of TS that contain
class-specific bias parameters capable of correcting for
systematic bias.

3. We make two theoretical contributions to EM-based
label shift adaptation: first, we identify a theoretically-
grounded strategy for computing the source-domain
priors that improves robustness when the calibrated
probabilities have systematic bias. Second, we prove
that the likelihood function is concave and bounded;
thus, the EM algorithm converges to the maximum
likelihood estimate.

2. Background

2.1. Temperature Scaling, Vector Scaling and Expected
Calibration Error

Calibration has a long history in the machine learning liter-
ature (DeGroot and Fienberg, 1983; Platt, 1999; Zadrozny

and Elkan; 2002; Niculescu-Mizil and Caruana, 2005;
Kuleshov and Liang, 2015; Naeini et al., 2015; Kuleshov
and Ermon, 2016). In the context of modern neural net-
works, Guo et al. (2017) showed that Temperature Scaling,
a single-parameter variant of Platt Scaling (Platt, 1999), was
effective at reducing miscalibration. Temperature scaling
performs calibration by introducing a temperature parameter
T to the logit vector of the softmax. Let z(z") represent
a vector of the original softmax logits computed on input
x”, and let y; be a random variable representing the label
for class 7. With temperature scaling, we have p(y;|z*) =
o2 @F)i/T
ative Log Likelihood (NLL) on a held-out portion of the
training set, such as the validation set. Guo et al. (2017)
compared TS to an approach defined as Vector Scaling (VS),
where a different scaling parameter was used for each class
along with class-specfic bias parameters. Formally, in vec-

z(xk i P
o2 (@) W) +b; . Guo et al. (2017)

where T is optimized with respect to the Neg-
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found that vector scaling had a tendency to perform slightly
worse than TS as measured by a metric known as the Ex-
pected Calibration Error (Naeini et al., 2015). To compute
the ECE, the predicted probabilities for the output class are
partitioned into M equally spaced bins, and the weighted
average of the difference between the bin’s accuracy and
the bin’s confidence is computed, where the weights are
determined by the proportion of examples falling in the
bin. Formally, ECE = S"_| @hcc(Bm) —conf(By,)],
where n is the number of samples.
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Figure 1. Temperature Scaling exhibits systematic bias. On CI-
FARI10 data, systematic bias was quantified by the Jensen-Shannon
divergence between the true class label proportions and the aver-
age class predictions on a held-out test set drawn from the same
distribution as the dataset used for calibration. TS: Temperature
Scaling, NBVS: No-Bias Vector Scaling, BCTS: Bias-Corrected
Temperature Scaling, VS: Vector Scaling. BCTS and VS had
significantly lower systematic bias compared to TS and NBVS.
Results are averaged over multiple models and dataset samples
(Sec. 4.1).
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2.2. Label Shift Adaptation via Expectation
Maximization

In a seminal paper on label shift adaptation, Saerens et al.
(2002) proposed an EM algorithm for estimating the shift
in the class priors between the training and test distribu-
tions. Let ¢¢*)(y = 4) denote the estimate (from EM
iteration s) of the prior probability ¢(y = %) of observ-
ing class 7 in the test set. The algorithm proceeds as
follows: first, ¢(%)(y = 1) is initialized to be equal to
the class priors p(y = i) estimated from the training set.
Then, the conditional probabilities in the E-step are com-
L= (i)
o1 (=il
nally, the prior estimates in the M-step are updated as
ety = i) = &S0 d®(y = ilzy), where N is
the number of examples in the testing set. The E and M
steps are iterated until convergence. As there is no need
to estimate p(x|y) in any step of the EM procedure, the
algorithm can scale to high-dimensional datasets. Note this
procedure assumes the conditional probability estimates
Pp(y = i|xy) are calibrated.

puted as ¢¥)(y = i|zy) = . Fi-

2.3. Label Shift Adaptation via Black Box Shift
Learning and Regularized Learning under Label
Shifts

Following the EM approach of Saerens et al. (2002), several
additional approaches for labels shift adaptation have
emerged (Chan and Ng; Storkey; Schoelkopf et al., 2012;
Zhang et al., 2013; Lipton et al., 2018; Azizzadenesheli
et al., 2019). Many of these approaches build estimates
p(z|y), which can scale poorly with dataset sizes and
underperform on high-dimensional data (Lipton et al.,
2018). Lipton et al. (2018) proposed Black-Box Shift
Learning (BBSL), which strives to efficiently estimate the
weights [w]; = gg/;g even in cases where the prediction
model p(y = i|xy) is poorly calibrated or biased. BBSL
proceeds as follows: let f be a function that accepts
an input and returns the model’s predicted class, let oy
denote an example from a held-out portion of the training
set, and let x}, denote an example from the testing set.
The empirical estimate of w, denoted as W, is computed

as W = C’Z;;ﬂg, where [@g]; %@%):l} and
[Cyyli; = 23, 1{f(xx) = iand y, = j}. Because the

approach above is not guaranteed to produce positive values
for all elements of w, any negative elements of 1 are set
to O after they are estimated. Domain adaptation is then
performed by retraining the model on the entire training
set distribution with examples upweighted in accordance
with . Lipton et al. (2018) denote the version of BBSL
described above as BBSL-hard. They also compare to a
variant that they call BBSL-soft, which they describe as the
case where where f outputs probabilities rather than hard

classes. We interpreted this to mean [i];, = E’“fT(m/’“)b
and [C,)ij = LS f(wr)il{yr = j}. Azizzadenesheli
et al. (2019) further improved upon BBSL by including
regularization terms in a technique known as Regularized
Learning under Label Shift (RLLS). In our experiments, we
compare to BBSL-hard, BBSL-soft, RLLS-hard and RLLS-
soft. Regularization hyperparameters for RLLS were set in
accordance with the hard-coded values given in the publicly
available code provided by the authors at https://
github.com/Angela0428/labelshift/blob/
5bbeb517938f4e3£f5bd14c2c105de973dcc2e0917/
label_shift.py#L453-1456. Note that BBSL and
RLLS both require a portion of the training set to be held
out during the initial training phase in order to accurately
estimate the confusion matrix Cy,,; in our experiments
involving calibration, we use this same heldout set to
calibrate the model.

3. Methods

3.1. No-Bias Vector Scaling and Bias-Corrected
Temperature Scaling

As shown in Fig. 1, we often found that TS alone resulted
in systematically biased estimates of p(y;|*), while VS, a
generalization of TS that contains both class-specific bias
terms and class-specific scaling terms, did not exhibit as
much systematic bias. Intrigued by this observation, we
investigated the performance of two intermediaries between
Temperature Scaling and Vector Scaling. The first, which
we refer to as No Bias Vector Scaling (NBVS), is equiv-
alent to vector scaling but with all the class-specific bias
parameters fixed at zero. The second, which we refer to
as Bias-Corrected Temperature Scaling, is equivalent TS
Scaling but with the addition of the class-specific bias terms
from VS. As with TS and VS, the parameters are optimized
to minimize the NLL on the validation set. Note that in the
case of binary classification, the parameterization of BCTS
reduces to Platt Scaling (Platt, 1999). Thus, BCTS can be
viewed as a multi-class generalization of Platt scaling.

3.2. Defining source-domain priors in the EM
algorithm

The EM algorithm of (Saerens et al., 2002) requires the user
to provide estimates of the source-domain prior class proba-
bilities p(y = 4). Let us consider two possible approaches
to estimating these probabilities. The first approach, consid-
ered in the original paper, is to set p(y = i) to the expected
value of the binary label y = 4 over the source domain
dataset. A second, less obvious, approach is to set it to the
expected value of p(y = i|x) over the source domain dataset,
formally denoted as E,.,q)[p(y = ilx)]. If p(y = i|r)
were unbiased, we anticipate that the two approaches would
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agree. However, depending on the calibration of p(y = i|x),
this may not be the case, bringing us to:

Lemma 1: In the absence of domain shift and in the
limit of sufficient data, the EM algorithm will converge
to the original priors p(y = ¢) if and only if p(y = i) =

Proof: Note that the EM algorithm will converge when
Gt (y = i) = ¢®)(y = i). From the M-step, we know
that g6t (y = i) = & SOV G (y = i|@y), where the
examples xj, are drawn from the target distribution. Substi-
tuting the formula for ¢(*) (y = i|x}) from the E-step, we

n a0 (y=y) )

N a®) (y=1)

have ¢V (y = i) = £ 3,1,

i=1"ply=7) ﬁ(yzjlmk)
To prove our lemma, we consider the scenario where
gy = i) = p(y = i) and check whether convergence
is attained. If the samples in the target distribution are
drawn from the same distribution as the source, then in the
limit of sufficient N, the value of ¢(**1) (y = 1) will ap-

1p(y=ilex) _ A
@) T, %ﬁ(y:;‘\mk) = Eyp@)p(y = ilzk).

Thus, convergence at p(y = ) will be attained if and only
if p(y = 1) = Egp(a) [Py = i2)] u

‘We reason that, in the absence of domain shift, it is desirable
that EM converge to the original priors p(y = 7). In light
of Lemma 1, we set p(y = i) to be the average value of
p(y = i|x) over the source-domain validation set (we use
the validation set to avoid the effects of overfitting on the
training set; this is the same validation set used for calibra-
tion). If we instead compute p(y = i) as the average of
the binary label in the validation set, we observe poor (even
detrimental) performance with EM when the calibration
method lacks bias correction (Tab. B.1).

Pu=1) ]}(y:l‘wk)

proach E,,

3.3. Likelihood Function of EM Objective

With reasonable assumptions, the likelihood function is con-
cave and bounded, hence unimodal. Thus, the EM approach
converges to the maximum likelihood estimation.

Lemma A: the EM objective is concave.

Proof: Let ¢(w;) and p(w;) denote the target and source
domain prior probabilities for class ¢. We wish to find
target-domain priors ¢(w) that maximize the log-likelihood
function given by

(X5 q(w)) = Zlong(mei)q(wi) (1)
k i

=Y log Y p(@p|wi)q(w;) )
k i

= logY_ p(w"]';(’f]’j)f @ gy @
k i !

=Zm@mzﬁﬁ%m0m
k i v

= S log(p(an) +log 3 2T 4
& p p(wz)
(5)

where (2) follows from the label shift assumptions and (3)
follows from Bayes’ rule. Now note that the maximization
is independent of p(xy) so the optimization problem is
equivalently written as follows

max

plwilzy)
q(w) Zk:logzi: p(w;) a(wi)

st. 1T . g(w) =1
q(w;)) >0 Vi

(6)

Note that in the objective, both p(w;|x) and p(w;) are con-
stants with respect to ¢(w). Hence, the objective function is
the sum of logs of linear functions in our decision variable
and the constraints are affine. Therefore, the maximization
problem is concave. n

Lemma B: given that % < B Vi (i.e. every class in
the target domain has a non-zero probability of occurrence
in the source domain, and the importance weights do not

explode), the likelihood function is bounded.
Proof: The proof is given in Appendix A

Given that the likelihood is concave and bounded, it follows
that EM converges to the maximum likelihood estimate.

3.4. Metrics for evaluating adaptation to label shift

The first metric we consider is the mean squared error in
the true weights compared to the estimated weights (Az-
izzadenesheli et al., 2019; Lipton et al., 2018). Let us de-
note the true target-domain prior as ¢(y = ¢) and the true
source domain prior as p(y = i). The true class weights
are defined such that w; = ¢(y = i)/p(y = 7). Both
BBSL and RLLS directly output estimated weights ;. For
EM, the weights can be obtained by dividing the estimated
target-domain priors ¢(y = ¢) by the source-domain priors
p(y = i) (where the source priors are computed as described
in Sec. 3.2). The mean squared error of the weights is then
simply 1 >, (w; —w;)?, where N is the number of classes.

The second metric we consider is the improvement in ac-
curacy of the domain-adapted model predictions relative
to using the original model predictions. Given the ratio
4(y = 1)/p(y = i), the adapted model predictions can be
L= p(y=ilzr)
>, S=Dp(y=j|@)’
the E-step of EM. For EM, we use these adapted predictions
to assess accuracy. In both the BBSL and RLLS papers,

computed as §(y = i|xy) = similar to
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model retraining was performed to obtain adapted predic-
tions. Due to computational constraints, as well as recent
observations that retraining deep neural networks using im-
portance weights does not work as well as expected (Byrd
and Lipton, 2019), we did not perform model retraining.
Thus, we use accuracy only to compare the impact of dif-
ferent calibration algorithms on EM, and use the MSE of
importance weights to compare EM to BBSL and RLLS.

4. Results
4.1. Experimental Setup

We evaluated the efficacy of BBSL, RLLS and EM cou-
pled to different calibration approaches on MNIST, CI-
FAR10/CIFAR100, and a diabetic retinopathy detection
dataset. For our experiments on MNIST, we used the ar-
chitecture from Azizzadenesheli et al. (2019), and for our
experiments on CIFAR10 and CIFAR100, we trained ten
different models, each with a different random seed, using
the code from Geifman and El-Yaniv (2017). For MNIST,
CIFAR10, and CIFAR100, 10K examples of the training set
were reserved as a held-out validation set. Dirichlet shift
was simulated on the testing set by sampling with replace-
ment in accordance with class proportions generated by a
dirichlet distribution with uniform « values of 0.1, 1.0 and
10.0 (smaller values of « result in more extreme label shift).
Samples from the validation set were used for calibration,
EM initialization and BBSL & RLLS confusion matrix esti-
mation. Accuracy was reported on the label-shifted testing
set, while the calibration metrics of NLL and ECE (with 15
bins) were reported on the unshifted testing set. In addition
to exploring different degrees of dirichlet shift, we also in-
vestigated how the algorithms behaved when the number of
samples used in the validation and testing set were varied.
For example, in experiments with n = 8000, only 8000
samples from the validation set and 8000 samples from the
shifted testing set were presented to the domain adaptation
and calibration algorithms. For each model, for a given «
and n, 10 trials were performed, where each trial consisted
of a different sampling (without replacement) of the vali-
dation set as well as a different sampling of the dirichlet
prior and the label-shifted testing set. This resulted in a total
of 100 experiments (10 for each of the 10 different mod-
els). Statistical significance was calculated using a signed
Wilcoxon test with a one-sided p-value threshold of 0.01.
For MNIST and CIFAR10, we also explored “tweak one”
shift (Lipton et al., 2018), where the prior of the fourth class
was set to a parameter p and the remaining class priors were
setto (1 — p)/9. We explored p = 0.01 and p = 0.9.

The Kaggle Diabetic Retinopathy dataset (Kaggle, 2015)
is a collection of retinal fundus images and an associated
“grade” from 0-4, where 0 indicates healthy and 1-4 indicate
progressively more severe stages of retinopathy. For our ex-

periments, we used the publicly-available pretrained model
from De Fauw (2015), but it modified so as to make predic-
tions on only one eye at a time (specifically, we supplied the
mirror image of a given eye as the input for the second eye).
Because test-set labels are unavailable, we separated the val-
idation set used during the training of the model (consisting
of 3514 examples) into “pseudo-validation” and “pseudo-
test” sets. Specifically, for each of 100 trials, we sampled n
examples from the original validation set without replace-
ment to form a pseudo-validation set, and kept the remaining
examples as the pseudo-test set. Calibration was performed
on the pseudo-validation set, and calibration metrics of NLL
and ECE were reported on the pseudo-test set. Domain shift
was then simulated by sampling from the pseudo-test set
in such a way that the proportion of “healthy” labels was
set to a fraction p, and the relative proportions of diseased
labels was kept the same as in the source distribution. In
the source distribution, p = 0.73; for the simulated domain
shift, we explored p = 0.5 and p = 0.9.

4.2. EM With Appropriate Calibration Achieves
Strong Performance At Estimating Shift Weights

We compared the performance of EM, BBSL and RLLS
in the presence of different types of calibration, using both
MSE of the shift weights as the metric (Sec. 3.4). Results
are in Tables 1, 2, 3, 4, D.4 & E.3. Across all datasets,
we observed the following general trends: first, in the ab-
sence of calibration, BBSL and RLLS tend to outperform
EM, with RLLS tending to perform the best (consistent
with the results in Azizzadenesheli et al. (2019)). How-
ever, as calibration improves, so does the performance of
EM. In particular, the best overall performance is achieved
when using the variants of temperature scaling that contain
class-specific bias parameters - namely BCTS and VS - in
combination with EM.

We also computed the improvement in accuracy achieved
by EM with different calibration methods compared to an
unadapted baseline (Tables 5, 6, 7, D.1). Across datasets,
observed that either BCTS or VS tended to achieve the best
accuracy. To reconcile this with the observation in Guo
et al. (2017) that VS did not give the best ECE compared
to TS, we calculated the Negative Log Likelihood (NLL)
of different calibration methods on an unshifted test set
and found that BCTS and VS tended to achieve the best
NLL, even when they did not yield the best ECE (Sec. C),
indicating that the ECE and NLL metrics do not always
agree with each other. Empirically, we found that the NLL
corresponds better with the improvement that a calibration
method will give to domain adaptation (Sec. H). This is
consistent with other reports stating that ECE computed
using only information about the most confidently predicted
class, as was done in Guo et al. (2017), is perhaps not the
best metric (Vaicenavicius et al., 2019).



EM with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation

Shift Calibration a=0.1 a=1.0 a =10
Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
EM None 0.02799;2.9  0.02484;3.38  0.02057; 3.41 | 0.00572;2.62  0.00392;3.0  0.00315;3.28 | 0.00222;1.7 0.00112; 1.88  0.00068; 2.5
BBSL-hard None 0.00961;2.46  0.00367;2.2  0.00222;2.0 | 0.00353;2.24 0.00209;2.38  0.00105;2.19 | 0.00285;2.9  0.00144;2.64 0.00067; 2.21
BBSL-soft None 0.0084; 1.31  0.00306; 1.23  0.00193; 1.38 | 0.00289; 1.41  0.00159; 1.05  0.00078; 0.97 | 0.00212; 1.48  0.00104; 1.54  0.00054; 1.39
RLLS-hard None 0.00895;2.19  0.0036; 1.99  0.00221; 1.88 | 0.00352;2.3  0.00209;2.25 0.00105;2.26 | 0.00285;2.7 0.00144;2.56  0.00067; 2.35
RLLS-soft None 0.00733; 1.14  0.00295; 1.2 0.00192; 1.33 | 0.00287; 1.43 0.00159; 1.32  0.00078; 1.3 | 0.00212; 1.22  0.00104; 1.38  0.00054; 1.55
EM TS 0.0306; 1.44  0.02824; 1.62  0.02403; 1.66 | 0.00673;1.27  0.00483; 1.53  0.00387; 1.7 | 0.00239; 1.42  0.0012; 1.38  0.00069; 1.42
BBSL-soft TS 0.00852; 0.84  0.00309; 0.67 0.00197; 0.68 | 0.00291; 0.83 0.00158;0.61 0.00079; 0.45 | 0.00211;0.89  0.00105; 0.9  0.00055; 0.69
RLLS-soft TS 0.00735; 0.72  0.00297; 0.71  0.00196; 0.66 | 0.00289; 0.9 0.00158;0.86 0.00079; 0.85 | 0.00211; 0.69 0.00105; 0.72  0.00055; 0.89
EM NBVS 0.00326; 0.53  0.00211; 0.69  0.00161; 0.82 | 0.00173; 0.36  0.00105; 0.68  0.00062; 0.84 | 0.00193;0.86  0.00091; 0.8  0.0005; 0.92
BBSL-soft NBVS 0.00802; 1.27  0.00292; 1.17  0.0019; 1.15 | 0.0027;1.26  0.00143; 1.06  0.00077; 0.93 | 0.00207; 1.19  0.00098; 1.13  0.00051; 1.0
RLLS-soft NBVS 0.00719; 1.2 0.00284; 1.14  0.00189; 1.03 | 0.00268; 1.38  0.00143; 1.26  0.00077; 1.23 | 0.00207;0.95 0.00098; 1.07  0.00051; 1.08
EM BCTS 0.00138; 0.09  0.00075; 0.26  0.00054; 0.42 | 0.00163; 0.36  0.00099; 0.48  0.00052; 0.6 0.002; 0.78 0.00091; 0.7  0.00049; 0.8
BBSL-soft BCTS 0.00816; 1.52  0.00292; 1.36  0.00192; 1.34 | 0.00276; 1.24  0.00145;1.14  0.00077; 1.04 | 0.0021; 1.24  0.00099; 1.17  0.00052; 1.05
RLLS-soft BCTS 0.00717; 1.39  0.00283; 1.38  0.00189; 1.24 | 0.00274; 1.4  0.00145;1.38  0.00077; 1.36 | 0.0021;0.98  0.00099; 1.13  0.00052; 1.15
EM VS 0.00182; 0.04  0.00077; 0.21  0.00052; 0.27 | 0.00161; 0.28  0.00097; 0.4  0.00054; 0.52 0.002; 0.8 0.00091; 0.66  0.0005; 0.8
BBSL-soft VS 0.0081; 1.53  0.0029; 1.39  0.00189; 1.42 | 0.00274;1.29  0.00144; 1.2  0.00078; 1.09 | 0.0021;1.21  0.00098; 1.21  0.00052; 1.06
RLLS-soft ' 0.00721; 1.43  0.00282; 1.4  0.00187; 1.31 | 0.00271;1.43  0.00143; 1.4  0.00077; 1.39 | 0.0021;0.99  0.00098; 1.13  0.00052; 1.14

Table 1. CIFAR10: Comparison of EM, BBSL and RLLS (dirichlet shift). Value before the semicolon is the average MSE in the
estimated shift weights (as defined in Sec. 3.4). Value after the semicolon is the average rank of a method relative to the others in the
group that use the same calibration. o represents the dirichlet shift parameter (larger o corresponds to less extreme shift), n represents
the sample size for both the validation set and the label-shifted test set. A bold value in a group is not significantly different from the
best-performing method in the group, as measured by a paired Wilcoxon test at p < 0.01. See Table D.2 for an equivalent table but
with statistical comparisons done across all calibration methods. EM tends to outperform BBSL and RLLS when calibration techniques

involving class-specific bias parameters are used.

Shift Calibration p=0.01 p=09
Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
EM None 0.00219;2.28  0.00112;2.2  0.00072; 2.04 | 0.00998; 1.72 0.00648; 1.47  0.00528; 1.7
BBSL-hard None 0.00235;2.89 0.00123;3.03 0.00083;3.37 | 0.01183;3.03 0.00796;3.12 0.00652; 3.48
BBSL-soft None 0.00186; 1.67  0.00099; 1.63  0.00063; 1.53 | 0.00926; 1.69 0.00488; 1.44  0.00336; 0.84
RLLS-hard None 0.00235;2.15 0.00123;2.19 0.00083;2.39 | 0.01099;2.21 0.0076;2.54  0.00633;2.78
RLLS-soft None 0.00186; 1.01  0.00099; 0.95 0.00063; 0.67 | 0.00875; 1.35 0.00478; 1.43  0.00335; 1.2
EM TS 0.00183; 1.04  0.00091; 0.92 0.00058; 0.78 | 0.0062; 0.65 0.00325; 0.52 0.00199; 0.42
BBSL-soft TS 0.00178; 1.35 0.00093; 1.36  0.0006; 1.55 | 0.00914; 1.35 0.00515; 1.25 0.00384; 1.17
RLLS-soft TS 0.00178; 0.61  0.00093; 0.72  0.0006; 0.67 0.00863; 1.0 0.00505; 1.23  0.00383; 1.41
EM NBVS 0.00177; 0.7  0.00088; 0.62 0.00056; 0.44 | 0.00181; 0.08 0.00088; 0.1 0.00044; 0.0
BBSL-soft NBVS 0.00184; 1.46  0.00096; 1.5  0.00062; 1.72 | 0.00887; 1.63 0.00509; 1.43  0.0038; 1.38
RLLS-soft NBVS 0.00184; 0.84 0.00096; 0.88 0.00062;0.84 | 0.0084;1.29  0.00499; 1.47 0.00379; 1.62
EM BCTS 0.00173; 0.82  0.00087; 0.72  0.00056; 0.48 | 0.0007; 0.0  0.00043; 0.02  0.0003; 0.0
BBSL-soft BCTS 0.0018;1.42  0.00094; 1.46  0.00061; 1.7 | 0.00879; 1.65 0.00506; 1.45 0.00373; 1.31
RLLS-soft BCTS 0.0018; 0.76  0.00094; 0.82 0.00061; 0.82 | 0.00832;1.35 0.00497;1.53 0.00372; 1.69
EM VS 0.00177; 0.76  0.00087; 0.56  0.00056; 0.3 | 0.00083; 0.0  0.00049; 0.02  0.00033; 0.0
BBSL-soft VS 0.00184; 1.4  0.00096; 1.53  0.00063; 1.77 | 0.00894; 1.67 0.00526;1.51 0.00415; 1.36
RLLS-soft VS 0.00184; 0.84 0.00096; 0.91 0.00063; 0.93 | 0.00843; 1.33 0.00515;1.47 0.00413; 1.64

Table 2. MNIST: Comparison of EM, BBSL and RLLS (“tweak-one” shift). Value before the semicolon is the average MSE in the
estimated shift weights. Value after semicolon is the average rank of a method relative to others in the group that use the same calibration.
A bold value in a group is not significantly different from the best-performing method in the group, as measured by a paired Wilcoxon test
atp < 0.01. See Table E.2 for an equivalent table but with statistical comparisons done across all calibration methods. EM tends to
outperform BBSL and RLLS when calibration techniques involving class-specific bias parameters are used.

5. Discussion

In this work, we explored the effect of calibration on pro-
cedures designed to perform domain adaptation to label
shift. In experiments on CIFAR10, MNIST, CIFAR100 and
diabetic retinopathy detection, we found the combination
of EM-based domain adaptation with an appropriate cali-
bration approach tends to outperform BBSL and RLLS. In

particular, we find that the best results are achieved when the
calibration is done with class-specific bias parameters that
can reduce systematic bias in the class probabilities - some-
thing that is not true of the popular Temperature Scaling
approach recommended by Guo et al. (2017). We recon-
cile this by noting that Guo et al. evaluated calibration
using ECE computed on only the most confidently predicted
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Shift Calibration a=0.1 a=1.0 a = 10.0
Estimator Method n=7000 n=8500 n=10000 n=7000 n=8500 n=10000 n=7000 n=8500 n=10000
EM None 2.26413;3.01 2.13137;3.18 2.08096; 3.22 | 0.75139;3.52  0.6941;3.62  0.66819;3.69 | 0.41269;3.75 0.38438;3.86 0.36558;3.94
BBSL-hard None 1.7799;2.94  1.27283;2.88 1.19495;2.95 | 0.4737;3.04 0.39212;2.95 0.35386;3.04 | 0.2997;3.08 0.24168;3.03  0.2161;3.03
BBSL-soft None 1.32248; 1.73  0.94221;1.79  0.83588; 1.79 | 0.32731; 1.62  0.27302; 1.72  0.24683; 1.68 | 0.21342;1.64  0.16996; 1.6  0.14857; 1.59
RLLS-hard None 0.89184; 1.56  0.74954;1.51 0.71544; 1.41 | 0.31391;1.47 0.26279; 1.38  0.23164; 1.32 | 0.18167;1.3  0.15771; 1.34  0.14006; 1.31
RLLS-soft None 0.73652; 0.76  0.61146; 0.64  0.57115; 0.63 | 0.22919; 0.35  0.19488; 0.33  0.17308; 0.27 | 0.1429; 0.23  0.12089; 0.17  0.1065; 0.13
EM TS 0.85732; 1.0 0.73074;0.99  0.65051;0.99 | 0.34451;1.32  0.30896; 1.43  0.28795; 1.41 | 0.17923;1.4  0.15609; 1.52  0.14494; 1.68
BBSL-soft TS 1.0511; 1.16  0.73046; 1.17  0.61651; 1.17 | 0.25082; 1.08  0.20128; 1.08  0.17385; 1.08 | 0.15657; 1.03  0.11901;0.95 0.10114; 0.89
RLLS-soft TS 0.70936; 0.84  0.58352;0.84 0.52749;0.84 | 0.20268; 0.6  0.1665; 0.49  0.14336; 0.51 | 0.12306; 0.57 0.09967; 0.53  0.08668; 0.43
EM NBVS 0.28904; 0.49  0.27676; 0.48  0.26944; 0.55 | 0.15848; 0.63  0.14828; 0.72  0.14304; 0.94 | 0.11329; 0.75 0.10635; 1.09  0.10256; 1.3
BBSL-soft NBVS 1.01696; 1.48  0.69643; 1.47  0.60503; 1.46 | 0.24203; 1.47  0.19391; 1.5  0.16837; 1.44 | 0.15685;1.5 0.12001; 1.27  0.10221; 1.2
RLLS-soft NBVS 0.65047; 1.03  0.52242;1.05 0.48347;0.99 | 0.19225;0.9 0.15747;0.78 0.13543; 0.62 | 0.12045; 0.75 0.09735; 0.64  0.08459; 0.5
EM BCTS 0.2458; 0.33  0.25185; 0.38  0.25628; 0.4 | 0.14527;0.5 0.14006; 0.65 0.13766; 0.84 | 0.10338; 0.63  0.09803; 0.94  0.09538; 1.2
BBSL-soft BCTS 0.97278; 1.56  0.68114;1.53  0.59169; 1.54 | 0.24328;1.58 0.19399; 1.55 0.16944; 1.48 | 0.15524;1.56 0.11855;1.38 0.10079; 1.24
RLLS-soft BCTS 0.63399; 1.11  0.51168;1.09  0.47275; 1.06 | 0.19027;0.92  0.15529; 0.8  0.1341; 0.68 | 0.11849;0.81 0.09528; 0.68 0.08269; 0.56
EM VS 0.1994; 0.24  0.2011;0.36  0.20436; 0.33 | 0.13788; 0.44  0.1307; 0.56  0.12736; 0.76 | 0.10468; 0.7  0.09869; 1.0  0.09667; 1.28
BBSL-soft VS 0.94791; 1.55  0.66421;1.52  0.57766; 1.52 | 0.23665; 1.56 0.18917;1.54  0.16374; 1.49 | 0.1519; 1.49 0.116; 1.32  0.09866; 1.15
RLLS-soft ' 0.64403; 1.21  0.52134; 1.12  0.47947; 1.15 | 0.1941; 1.0 0.15799; 0.9  0.1352; 0.75 | 0.11968; 0.81  0.09656; 0.68 0.08386; 0.57

Table 3. CIFAR100: Comparison of EM, BBSL and RLLS (dirichlet shift). Value before the semicolon is the avg. MSE in the
estimated shift weights. Value after the semicolon is the avg. rank of a method relative to the others in the group that use the same
calibration. A bold value in a group is not significantly different from the best-performing method in the group, as measured by a paired
Wilcoxon test at p < 0.01. See Table F.1 for an equivalent table but with statistical comparisons done across all calibration methods. EM
tends to outperform BBSL and RLLS when calibration techniques involving class-specific bias parameters are used.

Shift Calibration p=05 p=09
Estimator Method n=500 n=1000 n=1500 n=500 n=1000 n=1500
EM None 1.258; 1.03 0.53; 0.83 0.389; 0.92 | 0.112;1.96 0.079; 2.41 0.081; 2.75
BBSL-hard None 695.531;2.96 1087.163;3.14  1.746;3.1 | 370.245;3.25 284.462;3.18 0.743;2.77
BBSL-soft None 12.221;2.17 1.407;1.94 0.815; 1.89 1.171;2.24 0.098;1.86  0.088; 1.78
RLLS-hard None 2.204; 2.06 1.398; 2.56 1.064; 2.6 0.102; 1.6 0.049; 148 0.054; 1.61
RLLS-soft None 1.953;1.78 0.927;1.53 0.67;1.49 0.067; 0.95 0.041; 1.07  0.039; 1.09
EM TS 1.14; 0.5 0.465; 0.57 0.334; 0.52 0.11; 1.18 0.08; 1.31 0.079; 1.54
BBSL-soft TS 10.72; 1.44 1.286; 1.39 0.782; 1.4 0.536; 1.29 0.089; 1.14  0.071;0.88
RLLS-soft TS 1.866; 1.06 0.905; 1.04 0.646; 1.08 | 0.069; 0.53 0.046; 0.55 0.04; 0.58
EM NBVS 1.18; 0.61 0.549; 0.65 0.396; 0.63 | 0.168; 1.25 0.125;1.35  0.125; 1.59
BBSL-soft NBVS 18.236; 1.53 2.241; 1.47 1.021; 1.39 | 2.678;1.13 0.109; 0.88  0.067; 0.77
RLLS-soft NBVS 1.852;0.86 0.879; 0.88 0.751;0.98 | 0.072; 0.62 0.054; 0.77  0.046; 0.64
EM BCTS 1.082; 0.44 0.426; 0.49 0.304; 0.46 | 0.069; 0.65 0.038; 0.57  0.036; 0.69
BBSL-soft BCTS 61.304; 1.57 1.439; 1.45 0.887;1.49 | 0.747;1.29 0.049; 1.2 0.043; 1.11
RLLS-soft BCTS 2.412;0.99 0.867; 1.06 0.736; 1.05 | 0.066; 1.06 0.043;1.23 0.036; 1.2
EM VS 1.48; 0.6 0.503; 0.55 0.347; 0.5 0.066; 0.7 0.032; 0.56  0.029; 0.67
BBSL-soft VS 14.874; 1.47 1.359; 1.44 0.866; 1.43 0.33;1.3 0.049;1.15  0.042; 1.15
RLLS-soft VS 2.243;0.93 0.89; 1.01 0.7; 1.07 0.065; 1.0 0.042;1.29  0.035;1.18

Table 4. Kaggle Diabetic Retinopathy: Comparison of EM, BBSL and RLLS. p represents proportion of healthy examples in shifted
domain; source domain has p = 0.73. Value before semicolon is the average MSE in the estimated shift weights. Value after the
semicolon is the average rank of a method relative to others in the group that use the same calibration. A bold value in a group is not
significantly different from the best-performing method in the group (paired Wilcoxon test at p < 0.01). See Table G.1 for an equivalent
table but with statistical comparisons done across all calibration methods. EM tends to outperform BBSL and RLLS when calibration

techniques involving class-specific bias parameters are used.

classes, which is known to be misleading (Vaicenavicius
et al., 2019), and by observing that Vector Scaling (which
does include class-specific bias parameters) performed al-
most as well as Temperature Scaling in their evaluation.

We also observe that when the calibrated probabilities retain
systematic bias, domain adaptation to EM is sensitive to the
strategy used to compute the source-domain priors. If the

source-domain priors p(y = %) are not defined in a way that
mirrors the systematic bias in the predicted probabilities
p(y = i|x), then EM will estimate a label shift even if the
target domain is identical to the source domain (Lemma 1)
and can produce highly detrimental results (Tables B.1). By
contrast, if the source domain priors for EM are initialized
as recommend in Sec. 3.2, EM becomes substantially more
tolerant of systematic bias in the calibrated probabilities,
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Shift Calibration a=0.1 a=1.0 a=10

Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
EM None 6.986;2.77 6.926;3.17 6.938;3.31 | 1.968;3.36 2.016;3.44 2.055;3.69 | 0.25;2.79 0.217;3.38 0.263;3.42
EM TS 7.251; 1.68 7.2;2.13 7.217;2.21 | 2.127;2.83  2.172;2.92 2.204;3.05 | 0.243;3.1 0.225;3.34 0.276; 3.37
EM NBVS 7.324;1.63 7.314;1.59 7.314;1.69 25,146  2592;147 2.631;1.45 | 0.706; 1.4  0.788; 1.31 0.84;1.3
EM BCTS 7.328;1.69 7.337;1.42 7.347;1.4 | 2.593;0.98 2.664; 1.0  2.688;1.09 | 0.764; 1.24 0.839; 0.94 0.884; 0.93
EM AN 7.255;2.23  7.331;1.69 7.372;1.39 | 2.548; 1.37 2.652; 1.17 2.724;0.72 | 0.741; 1.47 0.838; 1.03  0.889; 0.98

Table 5. CIFAR10: Comparison of calibration methods when using EM adaptation to dirichlet shift, with A %accuracy as the
metric. Unlike BBSL and RLLS, the EM algorithm does not rely on retraining to produce domain adapted probabilities. Value before
the semicolon is the average change in %accuracy relative to a baseline of no adaptation. Value after the semicolon is the average rank
compared to other methods in the same column. Bold values in a column are not significantly different from the best performing method in
the column, as measured by a paired Wilcoxon test at p < 0.01. Calibration techniques involving class-specific bias parameters (namely
BCTS and VS) tend to achieve the best performance.

Shift Calibration a=0.1 a=10 a =10.0

Estimator Method n=7000 n=8500 n=10000 n=7000 n=8500 n=10000 n=7000 n=8500 n=10000
EM None 14.41;4.0 14.483; 4.0 14.463; 4.0 12.25; 4.0 12.292; 4.0 12.319; 4.0 11.711; 4.0 11.819; 4.0 11.829; 4.0
EM TS 26.112;1.63  26.101; 1.64  26.048; 1.68 | 21.625;1.82  21.638;1.9  21.622;1.9 | 20.721;1.95 20.875;2.2  20.89;2.05
EM NBVS 26.332; 1.6  26.323;1.73  26.464; 1.7 | 21.588;1.86 21.711;1.91 21.708;2.04 20.9;1.9 21.059;1.85 21.032; 1.93
EM BCTS 26.485;1.67 26.638;1.47 26.731; 1.44 | 21.907; 1.17 22.004; 1.23 22.015; 1.24 | 21.131;1.1  21.313; 1.07 21.297; 1.09
EM VS 26.889; 1.1 26.901; 1.16 26.954; 1.18 | 21.94;1.15 22.097;0.96 22.183;0.82 | 21.166; 1.05 21.408; 0.88  21.36; 0.93

Table 6. CIFAR100: Comparison of calibration methods when using EM adaptation to dirichlet shift, with A %accuracy as the
metric. Unlike BBSL and RLLS, the EM algorithm does not rely on retraining to produce domain adapted probabilities. Value before
the semicolon is the average change in %accuracy relative to a baseline of no adaptation. Value after the semicolon is the average rank
compared to other methods in the same column. Bold values in a column are not significantly different from the best performing method in
the column, as measured by a paired Wilcoxon test at p < 0.01. Calibration techniques involving class-specific bias parameters (namely
BCTS and VS) tend to achieve the best performance.

Shift Calibration p=20.5 p=209

Estimator Method n=500 n=1000 n=1500 n=500 n=1000 n=1500
EM None 1.926;3.09 2.076;3.49 2.196;3.64 | 1.296;3.42 1.375;3.81 1.477;3.8
EM TS 1.902;2.96 2.225;3.17 2.495;3.13 | 1.626;3.01 1.923;2.88 1.973;2.97
EM NBVS 3.23;1.69 3.789;1.49 4.062;1.54 | 2.074;2.44 2.266;2.24 2.405;2.17
EM BCTS 3.766; 0.88 4.356; 0.74 4.58;0.82 | 3.548;0.35 3.567;0.36 3.722; 0.44
EM VS 3.67;1.38 4.278; 1.11 4.545;0.87 | 3.5;0.78 3.57;0.71  3.746; 0.62

Table 7. Kaggle Diabetic Retinopathy: Comparison of calibration methods when using EM adaptation to domain shift, with
A%accuracy as the metric. p represents proportion of healthy examples in shifted domain; source distribution has p = 0.73. Unlike
BBSL and RLLS, the EM algorithm does not rely on retraining to produce domain adapted probabilities. Value before the semicolon is
the average change in %accuracy relative to a baseline of no adaptation. Value after the semicolon is the average rank compared to other
methods in the same column. Bold values in a column are not significantly different from the best performing method in the column, as
measured by a paired Wilcoxon test at p < 0.01. Calibration techniques involving class-specific bias parameters (namely BCTS and VS)
tend to achieve the best performance.

although it does not tend to outperform BBSL or RLLS in
the presence of poor calibration.

Thus, the EM converges to the global maximum of the like-
lihood. Future work could extend this analysis to derive

. . .. . eneralization guarantees for the domain adaptation.
We conjecture that EM is sensitive to systematic bias be- & & P

cause the E-step relies heavily on the ratio % Sys-

tematic bias is defined as error in p(y = ¢), which, as it

We presented an algorithm that is simple, computationally
efficient, and avoids both hyperparameter tuning and the

appears in the denominator, could manifest as large errors

G (y=i)

p(y=1)
One concern when using EM is the possibility of getting
trapped in local minima. To address this concern, we an-
alyzed the optimization of the likelihood function of EM
and determined that it is concave and bounded (Sec. 3.3).

in - particularly when p(y = 4) is small.

pitfalls associated with retraining deep learning models with
importance weighting (Byrd and Lipton, 2019). When tested
empirically on a variety of datasets and data shifts, it pro-
duces better or comparable results compared to the current
state-of-the-art. We posit that EM with bias-corrected cal-
ibration will prove particularly useful in big data settings
where deep learning models are more likely to be deployed.
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A. Proof that the EM objective is bounded

The statement we seek to prove is as follows: given that q(wlg < B Vi (i.e. every class in the target domain has a non-zero

probability of occurrence in the source domain, and the importance weights do not explode), the likelihood function is
bounded.

Proof: We give a loose bound

X g(w)) = 3 log(p(e)) +1og 3 f’(;‘z;')g_”)’“)qwi) ™
k i v
pwilzr)

< ijloggjip(wi) q(w;) ©)

< ZlogZp(wﬂwk) -B 9)
k 7

< Zlog(B . Zp(wilwk)) (10)
k 7

< N -log B (11)

where (8) is due to non-positivity of logs of probabilities, (9) is using the given assumption on ggz‘;%; , and (10) is due to the
fact that probabilities sum up to one. ' ]

B. Comparison of Strategies for Initializing EM Source Probabilities

Shift Calibration p=0.5 p=09
Estimator Method n=500 n=1000 n=1500 n=500 n=1000 n=1500
EM: source priors from preds None 1.926; 0.0 2.076; 0.0 2.196; 0.0 1.296; 0.26  1.375;0.17 1.477;0.14
EM: source priors from labels None -3.488; 1.0 -3.541; 1.0 -3.382; 1.0 0.782;0.74  0.937;0.83 1.043; 0.86
EM: source priors from preds TS 1.902; 0.0 2.225; 0.0 2.495; 0.0 1.626; 0.0 1.923; 0.0 1.973; 0.0
EM: source priors from labels TS -56.162; 1.0 -62.552;1.0 -64.195;1.0 | -69.146; 1.0 -76.619;1.0 -83.083;1.0
EM: source priors from preds NBVS 3.23; 0.0 3.789; 0.0 4.062; 0.0 2.074; 0.02  2.266; 0.01  2.405; 0.02
EM: source priors from labels NBVS -9.448; 1.0 -5.134; 1.0 -4.772;1.0 | -2.616;0.98 0.431;0.99 0.631;0.98
EM: source priors from preds BCTS 3.766; 0.0 4.356; 0.03 4.58; 0.01 3.548; 0.0 3.567;0.01 3.722;0.01
EM: source priors from labels BCTS 3.764; 1.0 4.357; 0.97 4.58; 0.99 3.548; 1.0 3.568; 0.99  3.723; 0.99
EM: source priors from preds VS 3.67;0.08 4.278;0.08 4.545;0.08 3.5;0.03 3.57;0.03 3.746; 0.03
EM: source priors from labels VS 3.662;0.92 4.278,0.92 4.559;0.92 | 3.506;0.97 3.572;0.97 3.746;0.97

Table B.1. The strategy for computing EM source priors heavily affects domain adaptation if probabilities retain systematic bias.
Value before the semicolon is the average improvement in %accuracy (across 100 trials) caused by applying domain adaptation to the
predictions on a diabetic retinopathy prediction task. Value after the semicolon is the average rank of a particular method relative to the
other method in the pair. Domain shift is induced by varying the proportion of “healthy” examples p; in the source distribution, p = 0.73.
We see that calibration methods that lack class-specific bias parameters (i.e. no calibration, TS and NBVS) can hurt domain adaptation if
source priors are initialized by averaging true labels rather than the predicted probabilities. A bold value in a pair is significantly better
than the non-bold value according to a paired Wilcoxon test at p < 0.01. See Sec. 4.1 for details on the experimental setup.

C. Calibration Quality Comparison

We find that bias-corrected versions of Temperature Scaling (namely Bias-Corrected Temperature Scaling and Vector
Scaling) tend to yield the best Negative Log Likelihood on an unshifted test set, even if they do not always yield the best
ECE. Results are shown in the tables below.
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Calibration NLL ECE
Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
None 0.299; 4.0 0.299; 4.0 0.299; 4.0 2.726; 4.0 2.726; 4.0 2.726; 4.0
TS 0.291;2.99 0.291; 3.0 0.291;3.0 | 1.069;1.23 1.06;1.83 1.027;2.12
NBVS 0.277;1.67 0.275;1.92 0.274;1.99 | 1.109; 1.51 1.023;1.51 0.952;1.35
BCTS 0.274; 0.34 0.272; 0.54 0.271;0.71 | 1.06;1.02 0.987;1.02 0.937; 1.06
VS 0.275; 1.0  0.272; 0.54 0.271;0.3 | 1.161;2.24 1.035;1.64 0.976;1.47

Table C.1. CIFAR10: NLL and ECE for different calibration methods. Metrics were computed on a test set that had the same
distribution as the validation set. Value before the semicolon is the average of the metric over all the runs. Value after the semicolon is the
average rank of the method relative to other methods in the column. » indicates the number of examples used for calibratin. Bold values
in a column are not significantly different from the best performing method in the column, as measured by a paired Wilcoxon test at

p < 0.01. See Sec. 4.1 for details on the experimental setup.

Calibration NLL ECE
Method n=7000 n=8500 n=10000 n=7000 n=8500 n=10000
None 1.735;4.0 1.735;4.0 1.735;4.0 | 20.041;4.0 20.041;4.0 20.041;4.0
TS 1.286;3.0 1.286;3.0 1.286;3.0 | 3.134;2.87 3.151;2.87 3.135;29
NBVS 1.241;2.0 1.24;2.0 1.239;2.0 | 2.263;0.09 2.281; 0.1 2.324; 0.1
BCTS 1.234;0.71 1.233;0.9 1.232;1.0 | 2.879;2.11 2.9;2.12 2.881; 2.1
VS 1.234; 0.29 1.231; 0.1 1.229; 0.0 | 2.458;0.93 2.48;0091 2.456; 0.9

Table C.2. CIFAR100: NLL and ECE for different calibration methods. Analogous to Table C.1.

Calibration NLL ECE
Method n=500 n=1000 n=1500 n=500 n=1000 n=1500
None 0.64; 4.0 0.639; 4.0 0.639; 4.0 8.734,4.0 8.737,4.0 8.767; 4.0
TS 0.571; 3.0 0.57; 3.0 0.569;3.0 | 3.65;2.77 3.729;2.92 3.853;2.76
NBVS 0.543;2.0 0.54;2.0 0.539;2.0 | 2.13;0.67 2.028;0.97 2.129;1.01
BCTS 0.514; 0.21 0.511; 0.57 0.511;0.63 | 2.255;1.21 2.097;1.17 2.171;1.14
VS 0.518;0.79 0.512; 0.43 0.51;0.37 | 2.323;1.35 2.065;0.94 2.153;1.09

Table C.3. Kaggle Diabetic Retinopathy Detection: NLL and ECE for different calibration methods. Analogous to Table C.1.
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D. CIFAR10 Supplementary Tables

Shift Calibration p=0.01 p=209

Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
EM None 0.784;291 0.798;3.04 0.761;3.31 | 16.304;3.79 16.356;3.84 16.369;3.92
EM TS 0.807;2.92 0.807;3.14 0.775;3.4 | 17.193;2.48 17.26;2.67 17.288;2.75
EM NBVS 1.149; 1.31  1.172;1.56  1.199;1.39 | 17.588;1.52 17.674;1.51 17.738; 1.68
EM BCTS 1.175; 1.38  1.224;1.27 1.262;1.15 | 17.724;1.09 17.779; 1.17  17.84; 1.24
EM VS 1.182; 1.48 1.258;0.99 1.301;0.75 | 17.727; 1.12 17.874; 0.81 17.988; 0.41

Table D.1. CIFAR10: Comparison of calibration methods when using EM adaptation to “tweak-one” shift, with A %accuracy as
the metric. Analogous to Table 5.

Shift Calibration a=0.1 a=10 a=10
Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
EM None 0.02799; 12.09  0.02484; 13.62  0.02057; 13.97 | 0.00572; 11.84  0.00392; 12.83  0.00315; 13.69 | 0.00222;9.11  0.00112;9.44  0.00068; 11.34
EM TS 0.0306; 11.82  0.02824; 12.83  0.02403; 12.94 | 0.00673; 10.83  0.00483; 12.24  0.00387; 12.94 | 0.00239; 10.53  0.0012; 10.74  0.00069; 11.23
EM NBVS 0.00326;4.77  0.00211;6.06  0.00161;6.48 | 0.00173;3.85  0.00105;5.15  0.00062;5.74 | 0.00193; 6.28 0.00091; 5.7 0.0005; 6.61
EM BCTS 0.00138; 1.37  0.00075; 2.32  0.00054; 3.04 | 0.00163;2.69  0.00099; 3.79  0.00052; 4.26 0.002; 6.19 0.00091; 5.52  0.00049; 5.99
EM \S 0.00182; 1.35  0.00077; 1.85  0.00052; 2.12 | 0.00161;2.73  0.00097; 3.66  0.00054; 4.04 0.002; 6.35 0.00091; 5.82  0.0005; 6.69
BBSL-hard None 0.00961; 11.15  0.00367; 10.57  0.00222;9.94 | 0.00353; 11.03  0.00209; 10.78  0.00105; 10.77 | 0.00285; 11.97 0.00144; 11.23  0.00067; 9.99
BBSL-soft None 0.0084; 8.77 0.00306; 8.34 0.00193; 8.24 0.00289; 8.89 0.00159; 8.42 0.00078; 7.41 0.00212; 7.85 0.00104; 8.22 0.00054; 7.7
BBSL-soft TS 0.00852;8.29  0.00309; 7.73 0.00197; 7.9 0.00291; 8.65  0.00158;7.49  0.00079;7.54 | 0.00211;7.44  0.00105;8.36  0.00055; 8.01
BBSL-soft NBVS 0.00802; 8.83 0.00292; 8.2 0.0019; 8.1 0.0027; 7.92 0.00143; 7.0 0.00077;7.21 | 0.00207;7.35  0.00098;6.83  0.00051; 6.69
BBSL-soft BCTS 0.00816; 8.49 0.00292; 7.68 0.00192; 7.72 0.00276; 8.02 0.00145; 7.69 0.00077; 6.58 0.0021; 7.33 0.00099; 7.53 0.00052; 6.77
BBSL-soft VS 0.0081; 8.54 0.0029; 8.51 0.00189;8.01 | 0.00274;7.65  0.00144;7.36  0.00078; 7.35 0.0021; 7.52 0.00098; 7.52  0.00052; 7.53
RLLS-hard None 0.00895; 10.59  0.0036; 10.15  0.00221;9.77 | 0.00352; 11.08  0.00209; 10.63  0.00105; 10.83 | 0.00285; 11.77  0.00144; 11.15  0.00067; 10.13
RLLS-soft None 0.00733;8.23  0.00295;8.03  0.00192;7.92 | 0.00287; 8.81 0.00159; 8.7 0.00078;7.75 | 0.00212;7.59  0.00104;8.06  0.00054; 7.86
RLLS-soft TS 0.00735;7.75  0.00297;7.39  0.00196;7.63 | 0.00289;8.57  0.00158;7.69  0.00079;7.93 | 0.00211;7.24  0.00105;8.18  0.00055; 8.21
RLLS-soft NBVS 0.00719; 8.33 0.00284; 7.62 0.00189; 7.59 0.00268; 7.83 0.00143; 7.16 0.00077; 7.46 0.00207; 7.11 0.00098; 6.77 0.00051; 6.77
RLLS-soft BCTS 0.00717;7.78  0.00283;7.14  0.00189;7.09 | 0.00274;7.99  0.00145;7.88  0.00077; 6.87 0.0021; 7.07 0.00099; 7.49  0.00052; 6.87
RLLS-soft \S 0.00721;7.85  0.00282;7.96  0.00187;7.54 | 0.00271;7.62  0.00143;7.53  0.00077; 7.63 0.0021; 7.3 0.00098; 7.44  0.00052; 7.61

Table D.2. CIFAR10: Comparison of all calibration and domain adaptation methods, using MSE (Sec. 3.4) as the metric (dirich-
let shift). Value before the semicolon is the average of the metric over all trials. Value after the semicolon is the average rank of the
domain adaptation + calibration method combination relative to the other method combinations in the column. Bold values in a column
are not significantly different from the best-performing method in the column as measured by a paired Wilcoxon test at p < 0.01. EM
with BCTS or VS tends to achieve the best performance. See Sec. 4.1 for details on the experimental setup.
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Shift Calibration p=0.01 p=0.9
Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
EM None 0.00202;9.59  0.00104; 11.31  0.00069; 13.25 | 0.08233;11.91 0.07773; 13.38  0.0756; 14.63
EM TS 0.00212; 10.33  0.00111; 11.69  0.00074; 13.8 | 0.11247;11.8  0.10919; 12.63  0.10942; 13.26
EM NBVS 0.0015; 5.05  0.00066; 5.01 0.00041; 6.2 0.0041; 2.84 0.00263; 3.75 0.00206; 4.8
EM BCTS 0.0015; 4.71 0.00065; 4.52  0.0004; 4.89 | 0.00221;1.38  0.00137;1.64  0.00104; 1.72
EM 'S 0.00151; 5.09  0.00064; 4.14  0.0004; 5.04 | 0.00266; 1.08  0.00144; 1.19  0.00104; 1.25
BBSL-hard None 0.00258; 12.4  0.00119; 12.01  0.00059; 10.53 | 0.02157;10.62 0.01198; 10.15  0.00599; 8.98
BBSL-soft None 0.00183;8.21  0.00081;8.03  0.00045;6.85 | 0.01905;9.79  0.01102;9.49  0.00612;9.55
BBSL-soft TS 0.00181; 7.56 0.0008; 7.34 0.00044; 6.67 0.0201;9.89  0.01171; 10.23  0.00677; 10.92
BBSL-soft NBVS 0.00175; 8.07 0.0008; 7.62 0.00047;7.67 | 0.01791;7.96  0.00921;7.03  0.00498; 6.99
BBSL-soft BCTS 0.00174;7.39  0.00081;7.74  0.00046;7.07 | 0.01808;7.96  0.00937;7.28  0.00501; 6.17
BBSL-soft 'S 0.00176;8.27  0.00081;7.91  0.00047;8.73 | 0.01798;7.74  0.00912;6.35  0.00486; 5.51
RLLS-hard None 0.00256; 12.13  0.00119; 11.7  0.00059; 10.11 | 0.02055; 10.47 0.01172;10.43  0.00596; 9.35
RLLS-soft None 0.00182; 7.8 0.00081;7.77  0.00045;6.51 | 0.01872;9.44 0.011;9.9 0.0061; 10.24
RLLS-soft TS 0.00179; 7.24 0.0008; 7.06 0.00044; 6.37 0.0198;9.8 0.0117;10.82  0.00675; 11.68
RLLS-soft NBVS 0.00174; 7.55 0.0008; 7.24 0.00047;7.29 | 0.01757;7.92  0.00916;7.54  0.00496; 7.73
RLLS-soft BCTS 0.00173; 6.9 0.00081;7.38  0.00046; 6.71 | 0.01769;7.76 0.0093; 7.58 0.00499; 6.96
RLLS-soft 'S 0.00175;7.71  0.00081;7.53  0.00047; 8.31 | 0.01759;7.64  0.00906; 6.61  0.00484; 6.26

Table D.3. CIFAR10: Comparison of all calibration and domain adaptation methods, using MSE (Sec. 3.4) as the metric (“tweak-
one” shift). Value before the semicolon is the average of the metric over all trials. Value after the semicolon is the average rank of the
domain adaptation + calibration method combination relative to the other method combinations in the column. Bold values in a column
are not significantly different from the best-performing method in the column as measured by a paired Wilcoxon test at p < 0.01. EM
with BCTS or VS tends to achieve the best performance. See Sec. 4.1 for details on the experimental setup.

Shift Calibration p=0.01 p=09
Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
EM None 0.00202; 1.8 0.00104;2.38  0.00069; 3.04 | 0.08233;2.83 0.07773;3.23  0.0756; 3.74
BBSL-hard None 0.00258;2.95 0.00119;2.77 0.00059;2.53 | 0.02157;2.04 0.01198;1.83 0.00599; 1.37
BBSL-soft None 0.00183; 1.45 0.00081; 1.31  0.00045; 1.33 | 0.01905;1.47 0.01102;1.19  0.00612; 1.2
RLLS-hard None 0.00256; 2.68  0.00119;2.47  0.00059; 2.11 | 0.02055; 2.03 0.01172;2.09 0.00596; 1.74
RLLS-soft None 0.00182; 1.12  0.00081; 1.07  0.00045; 0.99 | 0.01872;1.63  0.011; 1.66 0.0061; 1.95
EM TS 0.00212; 1.35  0.00111; 1.5  0.00074; 1.82 | 0.11247;1.42 0.10919; 1.48  0.10942; 1.6
BBSL-soft TS 0.00181;0.96  0.0008;0.89  0.00044; 0.74 | 0.0201; 0.6 0.01171;0.46  0.00677; 0.3
RLLS-soft TS 0.00179; 0.69  0.0008; 0.61  0.00044; 0.44 | 0.0198;0.98  0.0117;1.06  0.00675; 1.1
EM NBVS 0.0015; 0.62  0.00066; 0.66 0.00041; 0.82 | 0.0041; 0.18  0.00263; 0.42  0.00206; 0.64
BBSL-soft NBVS 0.00175; 1.42  0.0008; 1.36  0.00047;1.28 | 0.01791; 1.25 0.00921;0.98  0.00498; 0.75
RLLS-soft NBVS 0.00174;0.96  0.0008;0.98  0.00047;0.9 | 0.01757;1.57 0.00916; 1.6  0.00496; 1.61
EM BCTS 0.0015; 0.6  0.00065; 0.58  0.0004; 0.6 | 0.00221; 0.14 0.00137; 0.16 0.00104; 0.18
BBSL-soft BCTS 0.00174; 1.41  0.00081; 1.39  0.00046; 1.38 | 0.01808; 1.28 0.00937;1.13  0.00501; 0.96
RLLS-soft BCTS 0.00173;0.99 0.00081; 1.03  0.00046; 1.02 | 0.01769; 1.58  0.0093; 1.71  0.00499; 1.86
EM VS 0.00151; 0.56  0.00064; 0.52  0.0004; 0.56 | 0.00266; 0.04 0.00144; 0.12 0.00104; 0.22
BBSL-soft VS 0.00176; 1.46  0.00081;1.43  0.00047; 1.43 | 0.01798;1.29 0.00912;1.13  0.00486; 0.96
RLLS-soft VS 0.00175;0.98 0.00081;1.05 0.00047; 1.01 | 0.01759; 1.67 0.00906; 1.75  0.00484; 1.82

Table D.4. CIFAR10: Comparison of EM, BBSL and RLLS (“tweak-one” shift) using MSE as the metric. Analogous to Table 1,
but with tweak-one shift instead of dirichlet shift.
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E. MNIST Tables
Shift Calibration a=0.1 a =10 a =10
Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
EM None 0.01046;9.61  0.00786;8.99  0.00587;9.41 | 0.00484;12.34  0.0034; 13.06  0.00328; 13.82 | 0.00262; 12.45 0.00143; 12.85 0.00101; 13.85
EM TS 0.00945;8.17  0.00658;7.88  0.00476; 8.82 | 0.00265;7.55  0.00142;7.13  0.00117;8.46 | 0.00193;7.55 0.00089; 7.1 0.00057; 7.06
EM NBVS 0.00243;3.81  0.00187;3.94  0.00143; 4.3 0.00202; 4.6 0.00107; 4.17 0.00079; 5.4 0.00193;7.77  0.00088;7.14  0.00056; 6.74
EM BCTS 0.00128; 1.82  0.00094; 1.97  0.00088;2.73 | 0.00191;4.07  0.00107; 4.43 0.0008; 5.85 0.00187;6.29  0.00084; 5.92  0.00054; 5.73
EM VS 0.00133; 1.85  0.00093; 1.98  0.00083; 2.23 | 0.00195;4.46  0.00107; 4.64 0.0008; 5.92 0.00194;7.74  0.00086; 6.87  0.00056; 7.22
BBSL-hard None 0.00688; 10.4  0.00467; 10.04  0.0033; 10.3 | 0.00326; 10.98 0.00201; 11.63  0.00134; 11.34 | 0.00228; 11.28 0.00114; 11.15  0.00082; 12.51
BBSL-soft None 0.00634; 9.95 0.0043; 10.5 0.0029;9.92 | 0.00274;8.96  0.00151;8.91  0.00101;8.27 | 0.00188;8.51  0.00092;8.89  0.00056; 7.76
BBSL-soft TS 0.00573;9.07  0.00385;9.26  0.00262;8.35 | 0.00261;7.2 0.00144; 6.61  0.00096; 6.79 0.0018; 5.96 0.00086; 6.28  0.00054; 5.58
BBSL-soft NBVS 0.00629;9.78  0.00397;9.69  0.00269; 9.42 | 0.00265;8.51  0.00146;7.87  0.00096; 7.15 | 0.00187;7.86  0.00088;7.92  0.00055; 7.44
BBSL-soft BCTS 0.00612; 9.53 0.00392; 9.41 0.00269; 9.2 0.00262; 7.51 0.00145; 7.26 0.00095; 6.32 0.00183; 6.4 0.00086; 6.64 0.00054; 6.2
BBSL-soft VS 0.00635; 9.36 0.00394; 9.3 0.0027;9.51 | 0.00265;8.62  0.00149;8.72  0.00098; 8.39 0.00189; 7.8 0.00088;7.48  0.00056; 8.64
RLLS-hard None 0.00666; 10.03  0.00455;9.69  0.00324;9.74 | 0.00325;10.79  0.00201; 11.5  0.00134; 11.24 | 0.00228; 10.86 0.00114; 11.03  0.00082; 12.29
RLLS-soft None 0.00613; 8.94 0.0041;9.66  0.00283;9.13 | 0.00274;8.84  0.00151;9.07  0.00101;8.28 | 0.00188;8.39  0.00092;8.75  0.00056; 7.54
RLLS-soft TS 0.00558;8.12  0.00373;8.28  0.00258;7.51 | 0.00261;7.1 0.00144; 6.67  0.00096; 6.79 0.0018; 5.7 0.00086; 6.14  0.00054; 5.46
RLLS-soft NBVS 0.00617; 8.76 0.00385; 8.66  0.00265; 8.51 | 0.00265; 8.42 0.00146; 8.0 0.00096; 7.18 0.00187; 7.62 0.00088; 7.84 0.00055; 7.36
RLLS-soft BCTS 0.00599; 8.39 0.0038;8.32  0.00265; 8.27 | 0.00262;7.44  0.00145;7.45  0.00095; 6.37 0.00183; 6.2 0.00086; 6.58  0.00054; 6.06
RLLS-soft Vs 0.00623; 8.41  0.00384; 8.43  0.00266; 8.65 | 0.00265;8.61  0.00149;8.88  0.00098;8.43 | 0.00189;7.62  0.00088;7.42  0.00056; 8.56

Table E.1. MNIST: Comparison of all calibration and domain adaptation methods, using MSE (Sec. 3.4) as the metric (dirichlet
shift). Value before the semicolon is the average of the metric over all trials. Value after the semicolon is the average rank of the domain
adaptation + calibration method combination relative to the other method combinations in the column. Bold values in a column are not
significantly different from the best-performing method in the column as measured by a paired Wilcoxon test at p < 0.01. EM with BCTS
or VS tends to achieve the best performance, particularly for larger amounts of shift (corresponding to smaller cv). See Sec. 4.1 for details

on the experimental setup.

Shift Calibration p=0.01 p=09
Estimator Method n=2000 n=4000 n=3000 n=2000 n=4000 n=3000
EM None 0.00219; 11.93  0.00112; 11.76 ~ 0.00072; 12.0 | 0.00998;9.46  0.00648; 8.47  0.00528;9.71
EM TS 0.00183;7.28  0.00091; 6.61  0.00058; 5.55 0.0062; 6.44 0.00325;5.72  0.00199; 4.86
EM NBVS 0.00177;6.01  0.00088; 5.53 0.00056; 4.3 0.00181;2.45  0.00088; 2.47 0.00044; 1.8
EM BCTS 0.00173; 5.1 0.00087; 5.07  0.00056; 3.74 0.0007; 0.75 0.00043; 0.69 0.0003; 0.61
EM VS 0.00177;6.18  0.00087; 5.01  0.00056; 3.71 0.00083; 1.0 0.00049; 1.29  0.00033; 1.33
BBSL-hard None 0.00235;11.89  0.00123; 12.7  0.00083; 14.18 | 0.01183; 12.81 0.00796; 13.47  0.00652; 14.83
BBSL-soft None 0.00186;9.08  0.00099;9.18  0.00063;9.44 | 0.00926; 10.52  0.00488;8.26  0.00336; 5.59
BBSL-soft TS 0.00178; 6.63 0.00093; 6.6 0.0006; 6.73 | 0.00914;10.29  0.00515;9.41  0.00384;9.25
BBSL-soft NBVS 0.00184; 8.63 0.00096; 8.7 0.00062; 8.93 | 0.00887;9.19  0.00509; 8.99 0.0038; 8.79
BBSL-soft BCTS 0.0018; 6.94 0.00094; 7.3 0.00061; 6.66 | 0.00879;9.18  0.00506;8.93  0.00373; 7.69
BBSL-soft VS 0.00184; 8.57  0.00096; 8.55  0.00063; 10.07 | 0.00894;9.96  0.00526; 10.98  0.00415; 12.5
RLLS-hard None 0.00235; 11.15 0.00123; 11.86  0.00083; 13.2 | 0.01099; 11.75  0.0076; 12.84  0.00633; 14.05
RLLS-soft None 0.00186; 8.42 0.00099; 8.5 0.00063; 8.58 0.00875; 9.3 0.00478;7.95  0.00335;5.92
RLLS-soft TS 0.00178;5.89  0.00093; 5.96 0.0006; 5.85 0.00863; 9.0 0.00505; 8.94  0.00383;9.41
RLLS-soft NBVS 0.00184; 8.01  0.00096; 8.08  0.00062; 8.05 0.0084; 7.74 0.00499; 8.59  0.00379; 8.94
RLLS-soft BCTS 0.0018; 6.28 0.00094; 6.66  0.00061;5.78 | 0.00832;7.83  0.00497; 8.54 0.00372; 8.0
RLLS-soft VS 0.00184;8.01  0.00096;7.93  0.00063;9.23 | 0.00843;8.33  0.00515; 10.46  0.00413; 12.72

Table E.2. MNIST: Comparison of all calibration and domain adaptation methods, using MSE (Sec. 3.4) as the metric (“tweak-
one” shift). Value before the semicolon is the average of the metric over all trials. Value after the semicolon is the average rank of the
domain adaptation + calibration method combination relative to the other method combinations in the column. Bold values in a column
are not significantly different from the best-performing method in the column as measured by a paired Wilcoxon test at p < 0.01. EM
with BCTS or VS tends to achieve the best performance. See Sec. 4.1 for details on the experimental setup.



EM with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation

Shift Calibration a=0.1 a=1.0 a=10
Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
EM None 0.01046;2.06  0.00786; 1.86  0.00587;2.02 | 0.00484;2.88  0.0034;3.04  0.00328;3.3 | 0.00262;2.74 0.00143;2.74  0.00101; 3.0
BBSL-hard None 0.00688;2.34  0.00467;2.13  0.0033;2.32 | 0.00326;2.15 0.00201;2.31 0.00134;2.14 | 0.00228;2.57 0.00114;2.32  0.00082; 2.55
BBSL-soft None 0.00634; 1.97  0.0043;2.25  0.0029;2.05 | 0.00274; 1.54 0.00151; 1.15  0.00101; 1.25 | 0.00188; 1.33  0.00092; 1.44  0.00056; 1.17
RLLS-hard None 0.00666; 2.04  0.00455;1.93  0.00324; 1.92 | 0.00325;1.95 0.00201;2.19  0.00134;2.04 | 0.00228;2.15 0.00114;2.2  0.00082; 2.33
RLLS-soft None 0.00613; 1.59  0.0041; 1.83  0.00283; 1.69 | 0.00274; 1.48  0.00151; 1.31  0.00101; 1.27 | 0.00188; 1.21  0.00092; 1.3  0.00056; 0.95
EM TS 0.00945; 091  0.00658;0.87  0.00476; 1.0 | 0.00265;0.92 0.00142;0.9  0.00117; 1.14 | 0.00193; 1.16  0.00089; 1.02  0.00057; 1.08
BBSL-soft TS 0.00573;1.18  0.00385; 1.21  0.00262; 1.16 | 0.00261; 1.07  0.00144;1.02  0.00096; 0.93 | 0.0018; 1.05  0.00086; 1.06  0.00054; 1.02
RLLS-soft TS 0.00558; 0.91  0.00373; 0.92  0.00258; 0.84 | 0.00261; 1.01 0.00144; 1.08  0.00096; 0.93 | 0.0018; 0.79  0.00086; 0.92  0.00054; 0.9
EM NBVS 0.00243; 0.36  0.00187; 0.38  0.00143; 0.44 | 0.00202; 0.52  0.00107; 0.5  0.00079; 0.86 | 0.00193; 1.0  0.00088;0.92  0.00056; 0.9
BBSL-soft NBVS 0.00629; 1.46  0.00397; 1.47  0.00269; 1.44 | 0.00265; 1.28 0.00146; 1.18  0.00096; 1.05 | 0.00187; 1.12  0.00088; 1.08  0.00055; 1.09
RLLS-soft NBVS 0.00617; 1.18  0.00385; 1.15  0.00265; 1.12 | 0.00265;1.2  0.00146; 1.32  0.00096; 1.09 | 0.00187; 0.88  0.00088; 1.0  0.00055; 1.01
EM BCTS 0.00128; 0.12  0.00094; 0.18  0.00088; 0.28 | 0.00191; 0.48 0.00107; 0.54  0.0008; 0.82 | 0.00187;0.98 0.00084; 0.94  0.00054; 0.9
BBSL-soft BCTS 0.00612; 1.6 0.00392; 1.55  0.00269; 1.51 | 0.00262;1.29  0.00145; 1.13  0.00095; 1.06 | 0.00183; 1.11  0.00086; 1.06  0.00054; 1.12
RLLS-soft BCTS 0.00599; 1.28  0.0038; 1.27  0.00265; 1.21 | 0.00262; 1.23  0.00145; 1.33  0.00095; 1.12 | 0.00183; 0.91  0.00086; 1.0  0.00054; 0.98
EM VS 0.00133; 0.14  0.00093; 0.17  0.00083; 0.19 | 0.00195; 0.52  0.00107; 0.51  0.0008; 0.78 | 0.00194;0.96  0.00086; 0.84  0.00056; 0.88
BBSL-soft VS 0.00635; 1.55  0.00394; 1.56  0.0027; 1.56 | 0.00265; 1.22  0.00149; 1.17  0.00098; 1.09 | 0.00189; 1.11  0.00088; 1.11  0.00056; 1.1
RLLS-soft VS 0.00623; 1.31  0.00384; 1.27  0.00266; 1.25 | 0.00265; 1.26  0.00149; 1.32  0.00098; 1.13 | 0.00189; 0.93 0.00088; 1.05  0.00056; 1.02

Table E.3. MNIST: Comparison of EM, BBSL and RLLS (dirichlet shift). Analogous to Table 2, but with dirichlet shift rather than
tweak-one shift.

F. CIFAR100 Supplementary Tables

Shift Calibration a=0.1 a=1.0 a=10.0
Estimator Method n=7000 n=8500 n=10000 n=7000 n=8500 n=10000 n=7000 n=8500 n=10000
EM None 2.26413;13.56 2.13137;13.96  2.08096; 14.13 | 0.75139; 15.04  0.6941; 15.36  0.66819; 15.39 | 0.41269; 15.64 0.38438; 15.85 0.36558; 15.94
EM TS 0.85732; 8.05 0.73074; 8.15 0.65051; 7.88 0.34451;9.95  0.30896; 10.44  0.28795; 10.42 | 0.17923; 10.09 0.15609; 10.56  0.14494; 11.42
EM NBVS 0.28904;4.03  0.27676;4.07  0.26944;4.48 | 0.15848;4.75  0.14828;5.34  0.14304;6.21 0.11329;5.4 0.10635;7.03  0.10256; 8.17
EM BCTS 0.2458; 3.16 0.25185;3.53  0.25628;3.48 | 0.14527;3.61  0.14006;4.37  0.13766;5.31 | 0.10338;3.74  0.09803;5.44  0.09538; 6.54
EM VS 0.1994; 2.41 0.2011; 2.67 0.20436; 2.67 | 0.13788;3.06  0.1307; 3.62 0.12736; 4.34 | 0.10468;4.02  0.09869;5.62  0.09667; 6.88
BBSL-hard None 1.7799; 13.66  1.27283;13.5  1.19495;13.68 | 0.4737;14.31  0.39212; 14.13  0.35386; 14.32 | 0.2997; 14.84  0.24168; 14.75  0.2161; 14.65
BBSL-soft None 1.32248; 11.19  0.94221; 11.34  0.83588; 11.8 | 0.32731; 11.94  0.27302; 12.09  0.24683; 12.19 | 0.21342; 12.63  0.16996; 12.46  0.14857; 12.35
BBSL-soft TS 1.0511; 8.67 0.73046; 8.85 0.61651; 8.4 0.25082; 8.81 0.20128; 8.56 0.17385; 8.13 0.15657; 7.99 0.11901; 7.15 0.10114; 6.49
BBSL-soft NBVS 1.01696; 8.98  0.69643;8.76  0.60503; 8.65 0.24203; 8.3 0.19391;8.27  0.16837;8.11 | 0.15685;8.48  0.12001;7.56  0.10221;7.43
BBSL-soft BCTS 0.97278; 8.68 0.68114; 8.64 0.59169; 8.52 0.24328; 8.36 0.19399; 8.06 0.16944; 8.06 0.15524; 8.14 0.11855;7.11 0.10079; 6.77
BBSL-soft \S 0.94791;8.61  0.66421; 8.38 0.57766; 8.3 0.23665;7.55  0.18917;7.44  0.16374;7.11 0.1519;7.32 0.116; 6.29 0.09866; 5.76
RLLS-hard None 0.89184;10.2  0.74954; 10.58  0.71544; 10.44 | 0.31391; 10.82  0.26279; 10.74  0.23164; 10.8 | 0.18167;10.78  0.15771;11.1  0.14006; 10.62
RLLS-soft None 0.73652; 8.03 0.61146; 7.78 0.57115; 8.32 0.22919; 7.92 0.19488; 7.86 0.17308; 8.2 0.1429; 8.06 0.12089; 8.13 0.1065; 7.67
RLLS-soft TS 0.70936; 6.68  0.58352;6.61  0.52749;6.46 | 0.20268;5.93 0.1665; 5.45 0.14336; 491 | 0.12306;5.39  0.09967;4.93  0.08668; 4.41
RLLS-soft NBVS 0.65047; 6.8 0.52242;6.39  0.48347;6.25 | 0.19225;526  0.15747;491  0.13543;4.37 | 0.12045;4.73  0.09735;4.44  0.08459; 4.09
RLLS-soft BCTS 0.63399; 6.45 0.51168; 6.17 0.47275; 6.04 0.19027; 5.05 0.15529; 4.33 0.1341; 3.99 0.11849: 4.1 0.09528; 3.38  0.08269; 3.01
RLLS-soft VS 0.64403; 6.84  0.52134; 6.62 0.47947; 6.5 0.1941;5.34 0.15799; 5.03 0.1352; 4.14 0.11968; 4.65 0.09656; 4.2 0.08386; 3.8

Table F.1. CIFAR100: Comparison of all calibration and domain adaptation methods, using MSE (Sec. 3.4) as the metric
(dirichlet shift). Value before the semicolon is the average of the metric over all trials. Value after the semicolon is the average rank
of the domain adaptation + calibration method combination relative to the other method combinations in the column. Bold values in a
column are not significantly different from the best-performing method in the column as measured by a paired Wilcoxon test at p < 0.01.
EM with VS tends to achieve the best performance, particularly for larger amounts of shift (corresponding to smaller «). See Sec. 4.1 for
details on the experimental setup.

G. Diabetic Retinopathy Supplementary Tables



EM with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation

Shift Calibration p=0.5 p=0.9
Estimator Method n=500 n=1000 n=1500 n=500 n=1000 n=1500
EM None 1.25845; 5.32 0.52957;5.93 0.38875; 5.26 0.11245;9.65 0.07876; 11.25  0.0807; 12.07
EM TS 1.14032; 4.96 0.46493; 4.89 0.33443; 4.34 0.11045;9.48 0.07959; 1042 0.07946; 11.7
EM NBVS 1.18016; 6.23 0.54915; 5.98 0.39599; 6.26 0.16834; 10.2 0.1248;11.07  0.12453; 12.53
EM BCTS 1.08208; 4.54 0.42625; 4.02 0.30394; 4.55 0.06894; 4.33 0.038; 3.91 0.03581; 4.15
EM VS 1.47999; 5.58 0.50291; 4.78 0.34718; 4.96 0.06632; 4.22 0.03183; 3.4 0.02897; 3.71
BBSL-hard None 695.53053; 11.48  1087.16344; 13.27  1.74585; 12.34 | 370.24487; 13.22  284.46239; 12.8  0.74325; 11.67
BBSL-soft None 12.22058;9.3 1.40652; 9.88 0.81453; 8.88 1.17077; 10.73 0.09828; 9.93 0.08817; 9.31
BBSL-soft TS 10.71961; 9.3 1.28572; 8.81 0.78213; 8.63 0.53585;9.87 0.08911; 9.45 0.0714; 8.81
BBSL-soft NBVS 18.23611; 11.1 2.24104; 10.13 1.02109; 10.32 2.67819;9.7 0.10892; 9.01 0.06728; 8.07
BBSL-soft BCTS 61.30409; 10.7 1.43944;9.08 0.88667; 9.61 0.74657; 8.1 0.04882; 6.26 0.04345; 6.08
BBSL-soft VS 14.87357;9.91 1.35907; 8.96 0.8657;9.08 0.3301;7.25 0.04923; 6.34 0.04185; 6.0
RLLS-hard None 2.20358;9.09 1.39785; 11.65 1.06393; 11.24 0.10203; 8.01 0.04938; 7.69 0.05432; 8.04
RLLS-soft None 1.95288; 8.04 0.92663; 8.85 0.66962; 7.83 0.06693; 6.08 0.04131; 6.27 0.03922; 6.4
RLLS-soft TS 1.86605; 7.66 0.90546; 7.71 0.64625; 7.48 0.0692; 6.07 0.04575; 6.87 0.04036; 7.09
RLLS-soft NBVS 1.85194;7.38 0.87914; 7.36 0.75071; 8.55 0.07211; 6.81 0.05395; 8.1 0.04557;7.5
RLLS-soft BCTS 2.41169;7.91 0.86736; 7.31 0.7362; 8.6 0.06579; 6.18 0.04252; 6.49 0.03614; 6.47
RLLS-soft VS 2.2435;7.5 0.88968; 7.39 0.70032; 8.07 0.06544; 6.1 0.04173; 6.74 0.03524; 6.4

Table G.1. Kaggle Diabetic Retinopathy Detection: Comparison of all calibration and domain adaptation methods, using MSE
(Sec. 3.4) as the metric. p represents the porportion of healthy examples in the sthited domain; the source distribution has p = 0.73.
Value before the semicolon is the average of the metric over all trials. Value after the semicolon is the average rank of the domain
adaptation + calibration method combination relative to the other method combinations in the column. Bold values in a column are not
significantly different from the best-performing method in the column as measured by a paired Wilcoxon test at p < 0.01. See Sec. 4.1
for details on the experimental setup.

H. NLL Corresponds Better To Benefits In Label Shift Adaptation

To investigate whether NLL or ECE corresponded better to the benefits offered by a calibration method in the context of
label shift adaptation, we adopted the following strategy: in a given experimental run, we identified the calibration method
that provided the best NLL (or ECE) on the unshifted test set. We then looked at the performance of label shift adaptation
using this calibration method. Note that the calibration method selected can differ from one run to the next. Across datasets,
we observed that, by and large, selecting a calibration method according to the NLL produced better performance after
domain adaptation as compared to selecting a calibration method according to ECE. Results are show in the tables below.

Shift Calibration a=0.1 a=1.0 a=10

Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
EM Best NLL 7.332;03 7.326;0.32 7.37;0.28 | 2.593;0.36 2.664; 0.09 2.688; 0.06 | 0.764;0.42 0.839;0.04 0.884; 0.03
EM Best ECE 7.298;0.7 7.302;0.68 7.318;0.72 | 2.548;0.64 2.172;0.91 2.204;0.94 | 0.741;0.58 0.225;0.96 0.276;0.97

Table H.1. CIFAR10: NLL vs ECE, A % Accuracy, dirichlet shift. Entry in “calibration method” column indicates how the calibration
method for any given run was selected: either according to whether it produced the best NLL or whether it produced the best ECE,
where NLL and ECE were calculated on the unshifted test set. Value before the semicolon is the average change in %accuracy relative to
unadapted predictions. Value after the semicolon is the average rank of the given metric relative to the other metric in the pair. A bold
value is significantly better than the non-bold value in the pair using a paired Wilcoxon test at p < 0.01. See Sec. 4.1 for details on the
experimental setup.

Shift Calibration p=0.01 p=0.9

Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
EM Best NLL 1.192;0.17 1.253;0.21 1.301; 0.15 | 17.724;0.47 17.779;0.08 17.84; 0.07
EM Best ECE 1.053;0.83 1.149;0.79  1.16;0.85 | 17.727;0.53  17.26;0.92  17.288;0.93

Table H.2. CIFAR10: NLL vs. ECE, metric: A%accuracy, “tweak-one” shift. Analogous to Table H.1. The “tweak-one” shift
strategy is explained in Sec. 4.1.



EM with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation

Shift Calibration a=0.1 a=1.0 a=10
Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000 n=2000 n=4000 n=3000
EM Best NLL 0.17093; 0.17  0.07813; 0.27  0.05336; 0.27 | 0.1631;0.44  0.09884; 0.08 0.05226; 0.08 | 0.19969;0.5 0.09141; 0.24  0.04949; 0.22
EM Best ECE 1.58795;0.83  0.85381;0.73  0.48624;0.73 | 0.16126;0.56 0.48293;0.92 0.38694;0.92 | 0.19985;0.5 0.11969;0.76 0.06922;0.78
BBSL-soft Best NLL 0.80638; 0.43  0.28839;0.4  0.18902;0.47 | 0.27634;0.57  0.14499;0.5 0.07681;0.46 | 0.21012;0.51  0.09854; 0.41  0.05166; 0.4
BBSL-soft ‘ Best ECE ‘ 0.82049; 0.57  0.30148;0.6  0.18619; 0.53 ‘ 0.27356;0.43  0.15819;0.5 0.07883;0.54 ‘ 0.2095;0.49  0.10475;0.59  0.05539; 0.6
RLLS-soft Best NLL 0.71635; 041  0.28071;0.38  0.18712;0.49 | 0.27385;0.57  0.14469;0.5  0.07673;0.46 | 0.21012;0.51  0.09854; 0.41  0.05166; 0.4
RLLS-soft ‘ Best ECE ‘ 0.70332;0.59  0.28998;0.62  0.18421;0.51 ‘ 0.27112; 0.43 0.158; 0.5 0.0788; 0.54 ‘ 0.2095; 0.49  0.10475;0.59  0.05539; 0.6

Table H.3. CIFAR10: NLL vs. ECE, metric: MSE, dirichlet shift. Analogous to Table H.1, but using MSE (Sec. 3.4) as the metric
rather than change in %accuracy.

Shift Calibration p=0.01 p=09
Estimator Method n=2000 n=4000 n=8000 n=2000 n=4000 n=8000
EM Best NLL 0.14964; 0.27  0.06447; 0.3  0.03926; 0.35 | 0.2213;0.43  0.13654; 0.02  0.1036; 0.02
EM Best ECE 0.17892;0.73  0.07276;0.7  0.04478; 0.65 | 0.26599;0.57 10.91926;0.98 10.94244; 0.98
BBSL-soft Best NLL 0.17484;0.44 0.08129;0.52 0.04739;0.57 | 1.80777;0.54  0.93671; 0.24  0.50136; 0.14
BBSL-soft Best ECE 0.17423;0.56  0.0799; 0.48  0.04615; 0.43 | 1.79819;0.46  1.1714;0.76 0.67683; 0.86
RLLS-soft Best NLL 0.17377;0.44  0.08129;0.52  0.04739;0.57 | 1.76868; 0.54  0.92956; 0.23  0.49941; 0.13
RLLS-soft Best ECE 0.17305;0.56  0.0799; 0.48  0.04615; 0.43 | 1.75943;0.46  1.16983;0.77 0.6753; 0.87
Table H.4. CIFAR10: NLL vs ECE, metric: MSE, “tweak-one” shift. Analogous to Table H.1.
Shift Calibration | a=0.1 | a=1.0 | o =10.0
Estimator Method [ n=7000 7=8500 n=10000 | n=7000 7=8500 n=10000 | n=7000 7=8500 7=10000
EM Best NLL 26.889; 0.3 26.901; 0.31 26.954; 0.31 | 21.94;0.28 22.097; 0.28 22.183; 0.2 | 21.201; 0.22 21.41;0.21  21.36; 0.2
EM BestECE | 26.332;0.7 26.323;0.69 26.464;0.69 | 21.588;0.72 21.711;0.72 21.708;0.8 | 20.933;0.78 21.103;0.79 21.09;0.8
Table H.5. CIFAR100: NLL vs ECE, metric: A% Accuracy, dirichlet shift. Analogous to Table H.1
Shift Calibration a=0.1 a=1.0 a=10.0
Estimator Method n=7000 1n=8500 1n=10000 n=7000 1n=8500 7=10000 n=7000 7=8500 7=10000
EM BestNLL | 0.1994;0.37 0.2011;0.36  0.20436; 0.35 | 0.13788;0.22 0.1307; 0.23  0.12736; 0.26 | 0.10309;0.2  0.09864; 0.2  0.09667; 0.17
EM BestECE | 0.28904;0.63  0.27676;0.64 0.26944; 0.65 | 0.15848;0.78  0.14828;0.77 0.14304;0.74 | 0.11248;0.8  0.10512;0.8  0.10192; 0.83
BBSL-soft ‘ Best NLL ‘ 0.94791; 0.36  0.66421; 0.36 0.57766; 0.37 ‘ 0.23665; 0.24 0.18917; 023  0.16374; 0.2 ‘ 0.15332;0.24 0.11667; 023 0.09866; 0.1
BBSL-soft BestECE | 1.01696;0.64  0.69643; 0.64 0.60503; 0.63 | 0.24203;0.76  0.19391;0.77  0.16837;0.8 | 0.1567;0.76  0.11969;0.77  0.10204; 0.9
RLLS-soft ‘ Best NLL ‘ 0.64403;0.5 052134, 0.54 0.47947; 0.54 ‘ 0.1941;0.48 0.15799;0.55  0.1352; 0.43 ‘ 0.11958;039  0.0966;0.45  0.08386; 0.27
RLLS-soft Best ECE 0.65047;0.5  0.52242;0.46 0.48347;0.46 | 0.19225;0.52  0.15747;0.45 0.13543;0.57 | 0.12059;0.61 0.09732;0.55 0.08476; 0.73
Table H.6. CIFAR100: NLL vs ECE, metric: MSE, dirichlet shift. Analogous to Table H.1
Shift Calibration p=0.5 p=209
Estimator Method n=500 n=1000 n=1500 n=500 n=1000 n=1500
EM Best NLL 3.79;0.21 4.315;0.26 4.543;0.19 | 3.548;0.02 3.57;0.0 3.746; 0.02
EM Best ECE 3.49;0.79 4.099;0.74 4.179;0.81 | 2.074;0.98 3.57; 1.0 2.405;0.98
Table H.7. KaggleDR: NLL vs ECE, metric: A% Accuracy. Shift strategy modifies the proportion of healthy examples. Analogous to
Table H.1
Shift Calibration p=0.5 p=209
Estimator Method n=500 n=1000 n=1500 n=500 n=1000 n=1500
EM Best NLL 1.076; 0.3 0.46; 0.24 0.319;0.32 | 0.069; 0.07 0.032; 0.0 0.029; 0.01
EM Best ECE 1.028; 0.7 0.549;0.76  0.354;0.68 | 0.168;0.93 0.032; 1.0 0.125;0.99
BBSL-soft Best NLL 61.132;0.43 1.439; 0.27 0.875;0.29 | 0.747; 0.27 0.049; 0.0 0.042; 0.34
BBSL-soft Best ECE 8.74; 0.57 2.181;0.73  0.932;0.71 | 2.678;0.73 0.049; 1.0 0.067; 0.66
RLLS-soft Best NLL 2.445;0.44  0.859;0.33 0.726;0.31 | 0.066; 0.38 0.042; 0.0 0.035; 0.43
RLLS-soft Best ECE 2.089; 0.56 0.867;0.67 0.742;0.69 | 0.072;0.62 0.042; 1.0 0.046; 0.57

Table H.8. KaggleDR: NLL vs ECE, metric: MSE. Shift strategy modifies the proportion of healthy examples. Analogous to Table

H.1



