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Abstract

Reconstructing a finite set of curves from an unordered set of sample
points is a well studied topic. There has been less effort that considers how
much better the reconstruction can be if tangential information is given as
well. We show that if curves are separated from each other by a distance δ,
then the sampling rate need only be O(

√

δ) for error-free reconstruction.
For the case of point data alone, O(δ) sampling is required.

1 Introduction

In this paper, we consider the problem of reconstructing a C1 figure – that is,
a family of curves {γi(t)}0...M−1 from a finite set of data. More precisely, we
assume we are given an unorganized set of points {~pi}i=0...N−1, as well as unit
tangents to the points {~mi}i=0...N−1. Note that the tangents have no particular
orientation; making the change ~mi → −~mi destroys no information.

Definition 1.1 A polygonalization of a figure {γi(t)}0...M−1 is a planar graph
Γ = (V, E) with the property that each vertex p ∈ V is a point on some γi(t),
and each edge connects points which are adjacent samples of some curve γi.

Our goal here is to construct an algorithm which reconstructs the polygonal-
ization of a figure from the data defined above. An example of a polygonalization
is given in Figure 1.

The topic of reconstructing figures solely from point data {~pi}i=0...N−1 has
been the subject of considerable attention [3, 4, 9, 14, 5, 10, 11]. This is actu-
ally a more difficult problem, and only weaker results are possible. The main
difficulty is the following; if the distance between two separate curves γi and γj

is smaller than the sample spacing, then it is difficult to determine which points
are associated to which curve. Thus, sample spacing must be O(δ), with δ the
distance between different curves.

Tangential information makes this task easier; in essence, if two points are
nearby (say ~p1 and ~p2), but ±~m1 does not point (roughly) in the direction
~p2−~p1, then ~p1 and ~p2 should not be connected. This fact allows us to reduce the
sample spacing to O(δ1/2), rather than O(δ). This is to be expected by analogy
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Curves and polygonalizations�
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Figure 1: A figure and it’s polygonalization, c.f. Definition 1.1.

to interpolation; knowledge of a function and its derivatives yields quadratic
accuracy.

We should mention at this point related work on Surfels (short for Surface
Elements). A surfel is a point, together with information characterizing the
tangent plane to a surface at that point (and perhaps other information such as
texture). They have become somewhat popular in computer graphics recently,
mainly for rendering objects characterized by point clouds [1, 2, 6, 15, 17, 18].

In this work, we present an algorithm which allows us to reconstruct a curve
from {~pi, ~mi}i=0...N−1. We make two assumptions, under which the algorithm
is provably correct.

Assumption 1 We assume each curve γi(t) = (xi(t), yi(t)) has bounded cur-
vature:

∀i = 0 . . .M − 1,
|x′

i(t)y
′′
i (t) − y′

i(t)x
′′
i (t)|

(x′
i(t)

2 + y′
i(t)

2)3/2
≤ κm (1.1)

This assumption is necessary to prevent the curves from oscillating too much
between samples.

Assumption 2 We assume the curves γi and γj are uniformly separated from
each other, i.e.:

inf
t,t′

|γi(t) − γj(t
′)| ≥ δ for i 6= j (1.2a)

We also assume that different areas of the same curve are separated from each
other:

inf
|t−t′|>κm

−1π/2
|γi(t) − γi(t

′)| ≥ δ (1.2b)

2



��
Separation between curves �1�2

Figure 2: An illustration of Assumption 2. The black arrow illustrates the
condition (1.2a), while the red arrow illustrates the condition (1.2b).

(assuming the curve γi(t) proceeds with unit speed).

These assumptions ensure that two distinct curves do not come too close
together (1) and that separate regions of the same curve do not come arbitrarily
close (2). This is illustrated in Figure 2.

2 The Reconstruction Algorithm

Before we begin, we require some notation.

Definition 2.1 For a vector ~v, let ~v⊥ denote the vector ~v rotated clockwise by
an angle π/2.

Definition 2.2 Let d(~p, ~q) denote the usual Euclidean metric, d(~p, ~q) = |~p − ~q|.
Let d~m(~p, ~q) denote the distance in the ~m direction between ~p and ~q, i.e. d~m(~p, ~q) =
|(~p − ~q) · ~m|.

Definition 2.3 For a point ~p and a curve γi(t), we say that ~p ∈ γi(t) if
∃tsuchthatγi(t) = ~p.

2.1 The Forbidden Zone

Before explaining the algorithm which constructs the polygonalization of a figure
(the set of curves {γi(t)}0...M−1) from discrete data {~pi, ~mi}i=0...N−1, we prove
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Figure 3: The forbidden zones, as described in Lemma 2.5. The orange (darker
region) is the forbidden zone, and the blue (lighter region) is the set of points a
distance πκm

−1/2 away from pi.

a basic lemma which forms the foundation of our method. We assume for the
remainder of this section that the figure satisfies Assumption 1.

Definition 2.4 For a point ~pi, we refer to the set ∪±Bκm
−1(~pi ± ~m⊥

i κm
−1) as

its forbidden zone, illustrated in Fig. 3. Here, Br(~p) is the usual ball of radius
r about ~p.

Lemma 2.5 For every i 6= j, if ~pj is in the forbidden zone of ~pi, then (~pi, ~pj)
is not an edge in Γ assuming that the sample spacing is less than κm

−1π/2.

Proof. Suppose for simplicity that ~pi = (0, 0) and ~mi = (1, 0). Now, consider a
line τ(t) of maximal curvature. The curve of maximal curvature, with τ ′

y(t) > 0
and proceeding at speed κm

−1 is τ+(t) = (κm
−1 sin(t), κm

−1(1− cos(t))), while
the curve with τ ′

y(t) < 0 is τ−(t) = (κm
−1 sin(t), κm

−1(cos(t) − 1)).
By assumption 1, the curve γ(t) containing ~pi must lie between these curves

(the near boundaries of the forbidden zone in Fig 2.5). Thus, it is confined to
the blue (lighter) region while its arc length is less than κm

−1π/2. If ~pj is in the
forbidden zone and γ(t) connects ~pi to ~pj, then it must do so after travelling a
distance greater than κm

−1π/2. �

In short, the extra information provided by the tangents allows us to exclude
edges from the polygonalization if they point too far away from the tangent,
resulting in higher fidelity (c.f. Fig. 4).
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Proximity-based reconstruction

Point/Tangent-based reconstruction

Figure 4: A naive proximity-based reconstruction algorithm (shown), or even a
β-crust type algorithm, will introduce edges between different curves. Knowl-
edge of the forbidden zone allows us to remove such edges.

Definition 2.6 For a point ~p, we define the allowed zone or allowed region
Aǫ(~p) by

Aǫ(~p) = Bǫ(~pi) \
[

∪±Bκm
−1(~pi ± ~m⊥

i κm
−1)

]

(2.1)

That is, Aǫ(~p) is the ball of radius ǫ about p excluding the forbidden zone.

Clearly, any edge in the polygonalization starting at ~p, with length shorter
than ǫ, must connect to another point ~q ∈ Aǫ(~p). We are now ready to describe
the polygonalization algorithm.

Algorithm 1 (Noise-Free Polygonalization)

Input: [ We assume we are given the dataset {~pi, ~mi}i=0...N−1, the maximal
curvature κm, and a parameter ǫ satisfying both ǫκm < 1/

√
2 and 2κmǫ2 < δ.

We assume that adjacent points on a given curve are less than a distance ǫ
apart, i.e. the curve is ǫ-sampled. ]

1. Compute the graph G = ({~pi}i=0...N−1, E) with edge set:

E = {(~pi, ~pj) : ~pi ∈ Aǫ(~pj) and ~pj ∈ Aǫ(~pi)}

2. For each vertex ~pi ∈ {~pi}i=0...N−1:

5



a. Compute the set of vertices

R±
i = {~pj : (~pi, ~pj) ∈ E and ± (~pj − ~pi) · ~mi > 0}

b. Find the nearest tangential neighbors, i.e.

~r±i = argmin~q∈R±

i

d~mi
(~q, ~pi)

3. Output the graph Γ = ({~pi}i=0...N−1, E
′) with

E′ = {(~pi, ~r
+
i )} ∪ {(~pi, ~r

−
i )}

This graph is the polygonalization of {γi(t)}0...M−1.

Remark 2.7 As presented, the complexity of Algorithm 4 is O(N2), due to
both step 1 and step 2. (Step 2 can be slow if O(N) points are within the
allowed region of some particular point). The complexity can be reduced to
O(N log N); this is discussed in Appendix B.

The following theorem guarantees the correctness of Algorithm 4. Its proof
is presented in the next section.

Theorem 2.8 Suppose that:
δ > 2κmǫ2 (2.2a)

where δ is as in Assumption 2 and also

ǫ <
1

κm

√
2

(2.2b)

Suppose also that the distance between adjacent samples in the polygonalization
is bounded by ǫ, i.e. the curve is ǫ-sampled. Then graph Γ returned by Algorithm
4 is the polygonalization of {γi(t)}0...M−1.

2.2 Proof of Theorem 2.8

Lemma 2.9 Suppose i 6= j and that Assumption 2 holds. Then for all t, t′, if
(2.2) holds, then

γj(t
′) 6∈ Aǫ(γi(t)). (2.3)

Similarly, if i = j and |t − t′| ≥ κm
−1π/2, then (2.3) holds.

Proof. Fix t, and define ~p = γi(t) and ~m = γ′
i(t)/ |γ′

i(t)|. Define L to be the
line segment L = {~p + ~mκm

−1 sin(θ) : θ ∈ [− arcsin(ǫκm), arcsin(ǫκm)]}. The
boundaries of Aǫ(~p) are given by

~p + ~mκm
−1 sin(θ) ± ~m⊥κm

−1(1 − cos(θ)).
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Now, for any ~q ∈ γi and ~q ∈ Aǫ(~p), the distance between ~q and L is the normal
distance to L. This distance is bounded by:

d(~q, L) ≤ sup
θ

κm
−1 |(1 − cos(θ))|

≤ sup
θ

κm
−12 sin2(θ/2) = 2κm

−1 sin2(arcsin(ǫκm)/2) (2.4)

The intermediate value theorem implies arcsin(x) ≤ arcsin′(ζ)x = (1−ζ2)−1/2x
for some ζ ∈ [0, x]; since ǫκm < 2−1/2 (by (2.2b)), we find that:

arcsin(ǫκm) ≤ (1 − (2−1/2)2)−1/2κmǫ =
√

2κmǫ

Substituting this into (2.4) yields:

d(~q, L) ≤ 2κm
−1 sin2(

√
2κmǫ/2) ≤ κmǫ2 (2.5)

Thus, the normal distance between any point in Aǫ(~p) and L is O(κmǫ2).
If γj(t

′) 6∈ L + ~m⊥
R, then clearly γj(t

′) 6∈ Aǫ(γi(t)) so we assume γj(t
′) ∈

L + ~m⊥
R. In this case, γj(t

′) = ~p + ~mκm
−1 sin(θ0) + ~m⊥zj for some θ0 ∈

[− arcsin(ǫκm), arcsin(ǫκm)] and zj ∈ R. Thus, |zj | = d~m⊥(γj(t
′), L), the

normal distance to L. By construction, there is a unique value t′i such that
γi(t

′
i) = ~p + ~mκm

−1 sin(θ0) + ~m⊥zi. |zi| then equals d~m⊥(γi(t), L). By the
second triangle inequality,

d~m⊥(γj(t
′), L) = |zj| ≥ ||zj − zi| − |zi|| ≥ δ − κmǫ2 > κmǫ2

But this implies that d(γj(t
′), L) ≥ d~m⊥(γj(t

′), L) ≥ κmǫ2, and thus γj(t
′) 6∈

Aǫ(~p).
The proof when i = j is identical. �

This result shows that the graph G, computed in Step 1 of Algorithm 4, sep-
arates different γi and γj from each other, as well as different parts of the same
curve. Thus, after Step 1, we are left with a graph G having edges only between
points ~pi and ~pj which are on the same curve γk, and which are separated along
γk by an arc length no more than κm

−1π/2.
We now show that G is a superset of the polygonalization Γ.

Proposition 2.10 Suppose the point data {~pi}i=0...N−1 is ǫ-sampled, i.e. if two
points ~pi and ~pj are adjacent on the curve γk, then the arc length between ~pi

and ~pj is bounded by ǫ. Then G contains the polygonalization of {γi(t)}0...M−1.

Proof. If the distance between adjacent points ~pi and ~pj is at most ǫ, then
~pj ∈ Bǫ(~pi). Since the segment of γk between ~pi and ~pj has arc length less than
ǫ, ~pj is not in the forbidden zone of ~pi (by the same argument as in Lemma 2.5.
Thus, ~pj ∈ Aǫ(~pi) (and vice versa), and (~pi, ~pj) is an edge in G. �

We have now shown that G separates distinct curves, and that G contains
the polygonalization Γ of {γi(t)}0...M−1. It remains to show that G = Γ.
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Lemma 2.11 A curve γi(t) satisfying (1.1) admits the local parameterization

γi(t) = γ(t0) + (t − t0)γ
′(t0) + w(t)γ′⊥(t0) (2.6)

where w′(t0) = 0. The parameterization is valid for |t − t0| < κm
−1. In partic-

ular, w(t) < f−1(κmt) where f(z) = z/
√

1 + z2.

Proof. Taylor’s theorem shows the parameterization to be valid on an arbi-
trarily small ball. All we need to do is show that this parameterization is valid
on a region of size κm

−1.
The parameterization breaks down when w′(t) blows up, so we need to show

that this does not happen before t = ǫ. Plugging this parameterization into the
curvature bound (1.1) yields:

|w′′(t)|
(1 + w′(t)2)3/2

≤ κm

Assuming w′′(t) is positive, this is a first order nonlinear differential inequal-
ity for w′(t). We can integrate both sides (using the hyperbolic trigonometric
substitution w(t) = sinh(θ) for the left side) to obtain:

w′(t)
√

1 + w′(t)2
≤ κmt . (2.7)

With f(z) defined as in the statement, then f−1(z) is singular only at z = ±1,
and is regular before that. Solving (2.7) for w′(t) shows that:

w′(t) ≤ f−1(κmt)

implying that w′(t) is finite for κmt < 1, or t < κm
−1. �

Lemma 2.12 Fix a point ~pi = ~p ∈ {~pi}i=0...N−1. Choose a tangent vector ~m0

and fix an orientation, say +. Consider the set of points ~pj such that (~p, ~pj) is
an edge in G and (~pj − ~p) · ~m0 > 0. Suppose also that ǫ satisfies (2.2b). Then,
the only edge in the polygonalization of γ is the edge for which (~pj − ~p) · ~m0 is
minimal.

Proof. By Lemma 2.11, the curve γ(t) can be locally parameterized as a graph
near ~p, i.e. (2.6). This is valid up to a distance κm

−1; by (2.2b), it is valid for
all points in the graph G connected to ~p.

The adjacent points on the graph are the ones for which |t − t0| is minimal.
Note that ~m0 · (~pj − ~p) = t (simply plug in (2.6)); thus, minimizing ~m0 · (~pj − ~p)
selects the adjacent point on the graph. �

The minimal edge is the edge ~r+
0 as computed in Step (2b) of Algorithm 4.

Thus, we have shown that the computed graph G is the polygonalization Γ of
{γi(t)}0...M−1.

8



-0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

Point and Tangent data

-0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

0.4

Reconstructed curves

Figure 5: Some unordered points/tangents, and the curves reconstructed from
them. In this case, ǫ = 0.065, κm = 3 and δ = 0.015.

3 Reconstruction in the Presence of Noise

In practice one rarely has perfect data, so it is important to understand the per-
formance of the approach in the presence of errors. To that end, we consider the
polygonalization problem, but with the point data perturbed by noise smaller
than ζ and the tangent data perturbed by noise smaller than ξ. By this we mean
the following; to each point ~pi ∈ {~pi}i=0...N−1, there exists a point ~pi,∗ = γki

(ti)
such that |~pi − ~pi,∗| ≤ ζ. Similarly, the unit tangent vector ~mi differs from the
true tangent ~mi,∗ = γ′

ki
(ti) by an angle at most ξ. By a polygonalization of

the noisy data, we mean that (~pi, ~pj) is an edge in the noisy polygonalization
if (~pi,∗, ~pj,∗) is an edge in the noise-free polygonalization. In what follows, ~pj

refers to a given (noisy) point, while ~pj,∗ refers to the corresponding true point
(and similarly for tangents).

Noise, of course, introduces a lower limit on the features we can resolve. At
the very least, the curves must be separated by a distance greater than or equal
to ζ, to prevent noise from actually moving a sample from one curve to another.
In addition, noise in the tangent data introduces uncertainty which forces us to
increase the sampling rate; in particular, we require O(ǫξ + ǫ2) < δ.

The main idea in extending Algorithm 4 to the noisy case is to expand the
allowed regions to encompass all possible points and tangents. Of course, this
imposes new constraints on the separation between curves.

We also require a maximal sampling rate in order to ensure that the order
of points on the curve is not affected by noise. For work in the context of
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reconstruction using point samples only, see [7, 16].

Assumption 3 We assume that adjacent points ~pi and ~pj on the curve γk(t)
are separated by a distance greater than [(1 + 23/2)(2ξǫ + ζ)].

To compensate for noise, we expand the allowed region to account for un-
certainty concerning the actual point locations.

Definition 3.1 The noisy allowed region Aζ,ξ
ǫ (~pi) is the union of the allowed

regions of all points/tangents near (~pi, ~mi):

Aζ,ξ
ǫ (~pi) =

⋃

|~p−~pi|<ζ
arccos(~mi·~m)<ξ

(

Bǫ(~p) \
[

∪±Bκm
−1(~p ± ~m⊥κm

−1)
])

(3.1)

Algorithm 2 (Noisy Polygonalization)

Input: [ We assume we are given the dataset {~pi, ~mi}i=0...N−1, the maximal
curvature κm, the noise amplitudes ζ, ξ, and a parameter ǫ satisfying both ǫκm <
1/

√
2 and 4ζ + 2ǫξ + 2.1κmǫ2 < δ. We assume that adjacent points on a given

curve are less than a distance ǫ apart, i.e. the curve is ǫ-sampled. ]

1. Compute the graph G = ({~pi}i=0...N−1, E) with edge set:

E = {(~pi, ~pj) : Bζ(~pi) ∩ Aζ,ξ
ǫ (~pj) 6= ∅ and Bζ(~pj) ∩ Aζ,ξ

ǫ (~pi) 6= ∅} (3.2)

2. For each vertex ~pi ∈ {~pi}i=0...N−1:

a. Compute the set of vertices

R±
i = {~pj : (~pi, ~pj) ∈ E and ± (~pj − ~pi) · ~mi > 0}

b. Find the nearest tangential neighbors, i.e.

~r±i = argmin~q∈R±

i

d~mi
(~q, ~pi)

3. Output the graph Γ = ({~pi}i=0...N−1, E
′) with

E′ = {(~pi, ~r
+
i )} ∪ {(~pi, ~r

−
i )}

This graph is the polygonalization of {γi(t)}0...M−1.

The following theorem guarantees that Algorithm 2 works. The proof follows
that of Theorem 2.8 and is given in Appendix A. An application is shown in
Fig. 6.
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Figure 6: Noisy sampled points, and the reconstruction by Algorithm 2. This
example takes κm = 5, ǫ = 0.15, ζ = ξ = 0.01.

Theorem 3.2 Suppose that Assumptions 1, 2 and 3 hold. Suppose also that

δ > 4ζ + 4ǫξ + 2.1κmǫ2 , (3.3a)

ǫ <
1

κm

√
2

. (3.3b)

Then, Algorithm 2 correctly reconstructs the figure.

Remark 3.3 Consider a point ~p, which is a noisy sample from some curve in
the figure. All we can say a priori is that ~p is close to the true sample ~p∗, i.e.
~p ∈ Bζ(~p∗). However, given the knowledge that the polygonalization contains
the edges (~q, ~p) and (~p,~r), we can obtain further information on ~p∗. Not only
does ~p∗ lie in Bζ(~p), but ~p∗ ∈ Aζ,ξ

ǫ (~q) and ~p∗ ∈ Aζ,ξ
ǫ (~r). In short,

~p∗ ∈ Bζ(~p) ∩ Aζ,ξ
ǫ (~q) ∩ Aζ,ξ

ǫ (~r) (3.4)

We can therefore improve our approximation to ~p∗ by minimizing either the
worst case error,

~pnew = argmin~p sup
~x∈A

|~p − ~x| , A = Bζ(~p) ∩ Aζ,ξ
ǫ (~q) ∩ Aζ,ξ

ǫ (~r) (3.5a)

or the mean error,

~pnew = argmin~p

∫

A

|~p − ~x| d~x (3.5b)
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or some application-dependent functional. Noise in the tangential data can be
similarly reduced. This is a postprocessing matter after polygonalization, and
we will not expanded further on this idea in the present paper.

4 Examples

4.1 Extracting Topology from MRI images

In its simplest version, Magnetic Resonance Imaging (MRI) is used to obtain
the two-dimensional Fourier transform of the proton density in a planar cross-
section through the patient’s body. That is, if ρ(x) is is the proton density
distribution in the plane P , then the MRI device is able to return the data ρ̂(k)
at a selection of points k in the Fourier transform domain (k-space). The number
of sample points available, however, is finite and covers only the low-frequency
range in k-space well. Thus, it is desirable to be able to make use of the limited
information in an optimal fashion. We are currently exploring methods for
MRI based on exploiting the assumption that ρ(x) is piecewise smooth (since
different tissues have different densities, and the tissues boundaries tend to be
sharp). Our goal is to carry out reconstruction in three steps. First, we find the
tissue boundaries (the discontinu- ities). Second, we subtract the influence of
the discontonuities from the measured k-space data and third, we reconstruct
the remainder which is now smooth (or smoother). Standard filtered Discrete
Fourier Transforms are easily able to reconstruct the remainder, so the basic
problem is that of reconstructing the edges.

Using directional edge detectors on the k-space data, we can extract a set
of point samples from the edges, together with non-oriented normal directions.
By means of Algorithm 2, we can reconstruct the topology of the edge set and
carry out the procedure sketched out above. The details of the algorithm are
beyond the scope of this article, and will be reported at a later date, but Figure
7 illustrates the idea behind the method. Our work on curve reconstruction
was, in fact, motivated by this application.

4.2 Figure detection

A natural problem in various computer vision applications is that of recognizing
sampled objects that are partially obscured by a complex foreground. As a
model of this problem, we constructed an (oval) figure, and obscured it by
covering it with a sequence of curves. Algorithm 4 succesfully reconstructs the
figure, as well as properly connecting points on the horizontally and vertically
oriented covering curves. The result is shown in Figure 8. Note that the branches
are not connected to the oval (or each other).

4.3 Filtering spurious points

The method provided here is relatively robust with regard to the addition of
spurious random data points. This is because spurious data points are highly
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Figure 7: A simulated MRI image. The original image was two circles, together
with some low frequency “texture”. The noise level is 5%.
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Figure 8: A figure which is partially obscured. Algorithm 4 correctly computes
its polygonalization, and distinguishes it from the curves in front of it. To avoid
visual clutter, the tangents are not displayed in this figure.
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Figure 9: The same example as in Figure 5, but with 100 additional points (for
a total of 196), placed randomly.

unlikely to be connected to any other points in the polygonalization graph. To
see this, note first that for an incorrect data point to be connected to part of
the polygonalization at all, it would need to be located in Aǫ(~p) for some ~p.
This is a region of length O(ǫ) and width O(ǫ2). There are approximately L =
∑

j arclength(γj) such points, for a total volume of ǫ2L. Thus, the probability

that a spurious point is in some allowed region is roughly O(Lǫ2).
The second reason is that even if a spurious point is in some allowed region,

it is unlikely to point in the correct direction. If an erroneous point ~q is inside
Aǫ(~p), it is still not likely that ~p ∈ Aǫ(~q), since the tangent at ~q must point in the
direction of ~p (with error proportional to ǫ2, the angular width of Aǫ(~q)). Thus,
the probability that the tangent at ~q points towards ~p is O(ǫ2/2π). Combining
these arguments, the probability that any randomly chosen spurious point ~q is
connected to any other point in the polygonalization is O(Lǫ4).

4.3.1 Filtering the data

The aforementioned criteria suggest that our reconstruction algorithm has ex-
cellent potential for noise removal. It suggests that if we remove points which
do not have edges pointing towards other edges, then with high probability we
are removing spurious edges.

This notion is well supported in practice. By running Algorithm 4 on a
figure consisting of 96 true points, and 100 randomly placed incorrect points,
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a nearly correct polygonalization is calculated (Fig. 9). The original curve is
reconstructed with an error at only one point (the top left corner of the right-
hand curve).

Of course, if enough incorrect points are present, some points will even-
tually be connected by Algorithm 4. This can be seen in Figure 9: the line
segment near (0.9,−0.2) is an edge between two incorrect points. One hint
that an edge is incorrect is that it points to a leaf. That is, consider a set of
vertices ~p0, ~p1, . . . , ~pn as well as ~q. Suppose, after approximately computing the
polygonalization, one finds that the graph contains edges e0 = (~p0, ~p1), e1 =
(~p1, ~p2), . . . , en−1 = (~pn−1, ~pn) and en = (~pn/2, ~q). The vertex ~q is a leaf, that
is it is reachable by only one edge. A polygonalization of a set of closed curves
should not have leaves, suggesting that the edge en is spurious. Thus filtering
leaves is a very reasonable heuristic for noise filtering.

One final problem with noisy data worth mentioning is that sometimes, an
incorrect point will be present that lies within the allowed region of a legitimate
point, and closer to the legitimate point than the adjacent points along the curve.
This will prevent the correct edge from being added. This can be remedied
by adding not only ~r±i at Step 3 of the algorithm, but also points for which
d~m⊥(~pi) whose distance to ~pi is not much longer than the distance between ~pi

and ~r±i . With some luck, this procedure combined with filtering out leaves will
approximately reconstruct the correct figure.

Algorithm 3 (Polygonalization with Noise Removal)

Input:
[ We assume we are given the dataset {~pi, ~mi}i=0...N−1 (which includes spuri-

ous data), the maximal curvature κm, the noise amplitudes ζ, ξ, and a parameter
ǫ satisfying both ǫκm < 1/

√
2 and 2κmǫ2 < δ. We assume that adjacent points

on a given curve are less than a distance ǫ apart, i.e. the curve is ǫ-sampled.
We also assume we are given the number of leaf removal sweeps l ∈ Z

+ and a
threshold α ≥ 1. ]

1. Compute the graph G = ({~pi}i=0...N−1, E) with edge set:

E = {(~pi, ~pj) : ~pi ∈ Aǫ(~pj) and ~pi ∈ Aǫ(~pj)}

2. For each vertex ~pi ∈ {~pi}i=0...N−1:

a. Compute the set of vertices

R±
i = {~pj : (~pi, ~pj) ∈ E and ± (~pj − ~pi) · ~mi > 0}

b. Find the nearest tangential neighbors, i.e.

~r±i = argmin~q∈R±

i

± (~pj − ~pi) · ~mi

15



c. Find the set of almost-nearest tangential neighbors:

R±
i = {~r ∈ R±

i : d~mi
(~pi, ~r) ≤ α~r±i }

3. Compute the graph Γ = ({~pi}i=0...N−1, E
′) with

E′ =
⋃

i

{(~pi, ~r) : ~r ∈ R+
i } ∪ {(~pi, ~r) : ~r ∈ R−

i }

4. Search through Γ for leaves, and remove edges pointing to the leaves. Re-
peat this l times.

5. Output Γ.

In practice, we have found that α = 1.1 and l = 4 work reasonably well.
Figure 10 illustrates the result of Algorithm 3, both with and without filtering.

5 Conclusions

Standard methods for reconstructing a finite set of curves from sample data are
quite general. By and large, they assume that only point samples are given. In
some applications, however, additional information is available. In this paper,
we have shown that if both sample location and tangent information are given,
significant improvements can be made in accuracy. We were motivated by a
problem in medical imaging, but believe that the methods developed here will
be of use in a variety of other applications, including MR tractography and
contour line reconstruction in topographic maps [13, 8].

A Proof of Theorem 3.2

The proof of Theorem 3.2 follows that of Theorem 2.8 closely, with minor mod-
ifications made to account for the noise. To begin, we need to show that the
noisy allowed region is large enough to separate distinct curves. It is here that
we use (3.3a).

Proposition A.1 Suppose i 6= j and assume that (3.3) holds. Then Bζ(~pi) ∩
Aζ,ξ

ǫ (~pj) = ∅ unless ~pi and ~pj are samples from the same curve, and are separated
by an arc length no larger than κm

−1π/2.

Proof. For simplicity, suppose that ~pi ∈ Bǫ(~pj) (since otherwise, ~pi 6∈ Aζ,ξ
ǫ (~pj),

but ~pi is not sampled from the same curve as ~pj . Let γ(t) denote the curve from
which ~pj is sampled. Let ~p = ~pj and ~m = ~mj to simplify notation.

Select points ~p′′, ~m′′ to minimize d(~pi, L
′′), where L′′ = ~p′′ + ~m′′, with the

constraint that d(~p′′, ~p) < ζ and the angle between ~m′′ and ~m is smaller than ξ.
Let ~a ∈ L′′ be the point for which d(~a, ~pi) = d(~pi, L

′′).
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Figure 10: The same example as in Figure 5, but with 2000 additional random
points added (for a total of 2096). The original curve is no longer completely
reconstructed, but the general shape is still roughly visible, along with many
more spurious points. The middle figure shows the reconstruction without Step
4 of Algorithm 3. Filtering leaves with l = 4 improves the situation considerably
(bottom figure).
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It is shown in the proof of Lemma 2.9 that if d(~x, L′′) > κmǫ2, then vx 6∈
Aǫ(~p

′′) (recall (2.4), (2.5)). Thus, if d(~pi, L
′′) > κmǫ2 + ζ for any ~p′′, ~m′′, then

~x 6∈ Aǫ(~p
′′) for each ~x ∈ Bζ(~pi) and hence ~pi 6∈ Aζ,ξ

ǫ (~p). We will show this to be
the case.

By the second triangle inequality, we have the bound:

d(~pi, L
′′) = d(~pi,~a) ≥ d(~p′i,~a) − d(~pi, ~p

′
i)

≥ d(~p′i,
~b) − d(~b,~a) − d(~pi, ~p

′
i) ≥ δ − d(~b,~a) − ζ (A.1)

where ~b is the point on γ(t) closest to ~p′i. Once we show this is greater than
κmǫ2, the proof is complete.

Let L′ = ~p′ + ~m′t (with ~p′ and ~m′ being true samples of γ(t), approximated
by ~p and vm). Then we have the bound:

d(~b,~a) ≤ sup
~g∈L′

d(~b,~g) + d(~g,~a) ≤ d(~b, L′) + d(~a, L′) ≤ κmǫ2 + d(~a, L′) (A.2)

The bound on d(~b,~g) follows since ~b is a sample from γ(t) (recalling (2.4), (2.5)).
Since ~a = ~p′′ + ~m′′s (for some s ∈ [−ǫ, ǫ]), we can perform the bound:

d(~a, L′) = sup
|t|≤ǫ

d(~a, ~p′ + ~m′t) ≤ sup
|s|≤ǫ

sup
|t|≤ǫ

d(~p′′ + ~m′′s, ~p′ + ~m′t)

≤ d(~p′′ + m′′ǫ, ~p′ + ~m′ǫ) ≤ 2ζ + 4ξǫ (A.3)

In (A.3), we assume m′ and m′′ are oriented the same way. It is easy enough to
see that the sup is achieved at the endpoints; we then use the triangle inequality
d(~p′′, vp′) < d(~p′′, ~p) + d(~p, ~p′) ≤ 2ζ, and similarly for the tangents. Thus, we
find that:

(A.2) ≤ κmǫ2 + 2ζ + 4ǫξ (A.4)

Plugging this into (A.1) shows that:

d(~pi, L
′′) ≥ δ − (4ζ + 4ǫξ + κmǫ2) ≥ 1.1κmǫ2 > κmǫ2 + ζ (A.5)

where the last inequality follows from (3.3a). �

This shows that the graph G computed in Step 1 separates distinct curves.
The next result parallels Proposition 2.10, and shows that the noisy allowed

region contains nearby points on the polygonalization.

Proposition A.2 Suppose the figure is sampled at a rate satisfying (2.2b).
Then G contains the polygonalization of the figure.

Proof. The point ~pi and tangent ~mi are close to some point ~p′i, ~m′
i on the figure

{γi(t)}0...M−1; in particular, |~pi − ~p′i| ≤ ζ and arccos(~mi · ~m′
i) < ξ . Similarly,

there is a point ~p′j on the figure a distance no more than ζ away from ~pj . By

Proposition 2.10, ~p′j ∈ Aǫ(~p
′
i). Since ~p′j ∈ Bζ(~pj) and ~p′j ∈ Aǫ(~p

′
i) ⊂ Aζ,ξ

ǫ (~pi),

we find that ~p′j ∈ Bζ(~pj) ∩ Aζ,ξ
ǫ (~pi) 6= ∅. Repeating this argument with i and j

interchanged shows that (3.2) holds, and (~pi, ~pj) is an edge of G. �
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Proposition A.3 Fix a point ~pi = ~p ∈ {~pi}i=0...N−1, and suppose that As-
sumption 3 holds. Choose a tangent vector ~m0 and fix an orientation. Consider
the set of points ~pj such that (~p, ~pj) is an edge in G (as per Step 1 of Algorithm
2) and (~pj − ~p) · ~m0 > 0. Suppose also that ǫ satisfies (3.3b).

Then the nearest tangential neighbor of ~p (i.e. the edge for which (~pj−~p)· ~m0

is minimal) is the edge in the polygonalization of γ.

Proof. The idea of the proof follows that of Lemma 2.12 closely, but we must
adjust for our uncertainty as to the point and tangent.

The curve itself has the parameterization γ(t) = ~p′ + ~m′t + ~m′⊥w(t), by
Lemma 2.11, and this is valid for |t| < κm

−1. However, we do not know ~p′

and ~m′, only ~p and ~m. We wish to find the point ~pj for which ~m′ · (~p′j − ~p′) is
minimal, and we approximate this by finding the point for which ~m · (~pj − ~p) is
minimal.

Using the fact that ~m · (~pj − ~p) − ~m · (~pk − ~p) = ~m · (~pj − ~pk), we find that

~m · (~pj − ~p) − ~m · (~pk − ~p) = ~m · (~pj − ~pk) =

~m · (~p′j − ~p′k) + ~m · ([~pj − ~p′j] − [~pk − ~p′k])

= ~m′ · (~p′j − ~p′k) + (~m − ~m′) · (~p′j − ~p′k) + ~m · ([~pj − ~p′j ] − [~pk − ~p′k]) (A.6)

The second and third terms on the right side of (A.6) are the error terms. We
have the bound:

∣

∣(~m − ~m′) · (~p′j − ~p′k) + ~m · ([~pj − ~p′j] − [~pk − ~p′k])
∣

∣

≤
√

sin2(ξ) + (1 − cos(ξ))2
∣

∣~p′j − ~p′k
∣

∣ + 2ζ ≤ 2(ξǫ + ζ)

We wish to find the j for which (A.6) is negative for every k. If we can show
that

∣

∣~m′ · (~p′j − ~p′k)
∣

∣ > 2(ξǫ + ζ), we are done.

If we observe that ~p′j = ~p′ + ~m′tj + w(tj)~m
′⊥ (using the notation of Lemma

2.11), and similarly ~p′k = ~p′+ ~m′tk +w(tk)~m′⊥, we find then that ~m′ ·(~p′j −~p′k) =
tj − tk.

It is here we use the fact that |~pj − ~pk|2 = (tj − tk)2 + (w(tj) − w(tk))2 ≥
[(1 + 23/2)(2ξǫ + ζ)]2. With f(z) as in Lemma 2.11, we find that:

|(w(tj) − w(tk))| = |w′(y)| |(tj − tk)| ≤ 1

f ′(f−1(κmy))
|(tj − tk)|

= (1 + (f−1(κmy))2)3/2 |(tj − tk)|

for some y ∈ [0, κm
−1]. If κmy < 1/

√
2 (i.e. (2.2b) is satisfied), then f−1(κmy) <

1 and (1 + f−1(κmy)2) < 2. Thus:

∣

∣

∣
(1 + 23/2)(tj − tk)

∣

∣

∣

2

≥ (tj − tk)2 + [(1 + (f−1(κmy))2)3/2(tj − tk)]2

≥ |~pj − ~pk|2 ≥ [(1 + 23/2)(2ξǫ + ζ)]2 (A.7)
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(the last inequality follows from Assumption 3) implying that |tj − tk| ≥ 2(ξǫ+
ζ). �

B Speeding it up: an O(N log N) algorithm

As remarked earlier, Algorithm 4 and 2 run in O(N2) time as written. The slow
step is Step 1 which involves comparing every point/tangent pair to every other
such pair. This scaling issue can be remedied by using a spatially adaptive data
structure [12]

A caveat: there are two different ways of increasing N . The first (increasing
outward) is by taking larger figures, with the sampling rate held fixed. The
second (increasing inward) is by holding the figure size fixed, but increasing the
sampling rate. We are interested primarily in the first case, and we will treat
this case only. Therefore, we make the following additional assumption:

Assumption 4 We assume that the density of points in the input data is
bounded above, i.e.:

sup
B

|{~pi}i=0...N−1 ∩ B|
|B| ≤ ρm (B.1)

Note that this always holds in the case of noisy data. In this case, Assump-
tion 3 combined with (3.3) implies that

ρm ≤ 1

(1 + 23/2)(2ξ + ζ)δ
≤ 1

(1 + 23/2)(2ξ + ζ)(4ζ + 4ǫξ + 2.1κmǫ2)
.

In computing Step 1 of Algorithm 4 or 2, we must determine whether two
points are in each other’s allowed region (or a ball of radius ζ about the noisy
allowed region). Note that Aǫ(~pi) ⊂ Bǫ(~pi), so if |~pi − ~pj | ≥ ǫ, then clearly
the edge (~pi, ~pj) 6∈ G. Similarly, for the noisy case, if |~pi − ~pj| ≥ ǫ + 2ζ, then
(~pi, ~pj) 6∈ G. We exploit this fact by using quadtrees, which allow us to avoid
comparing points more than a distance ǫ apart.

Algorithm 4 (Fast Computation of the Graph G)

Input: [ We assume we are given the dataset {~pi, ~mi}i=0...N−1, the maximal
point density ρm and the sampling ǫ. We also take the parameter λ = ǫ (noise
free case) or λ = ǫ + 2ζ (noisy case). ]

1. Compute a quadtree Q storing (~pi, ~mi) pairs. The splitting criteria for a
node is when the node contains more than ρmλ2 points.

2. Initialize the graph G = ({~pi}i=0...N−1, E) with empty edge set.
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3. For each point ~pi, iterate over the points ~pj contained in the node contain-
ing ~pi and all of its nearest neighbors. If

~pi ∈ Aǫ(~pj) and ~pj ∈ Aǫ(~pi),

then add the edge (~pi, ~pj) to the graph G.

4. Return G.

Initializing the quadtree in step 1 is an O(N log N) operation. Assumption
4 implies that the width of a node will be no smaller than λ; thus, a node
containing a point ~pi together with it’s nearest neighbors contains the allowed
region. The comparison at step 3 involves at most ρmλ2 points, regardless of
N . Thus, the complexity of this algorithm is

O(N log(N) + Nρmλ2). (B.2)
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