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Abstract

We study the evolution of a one dimensional model atom with δ-
function binding potential, subjected to a dipole radiation field E(t)x with
E(t) a 2π/ω-periodic real-valued function. We prove that when E(t) is a
trigonometric polynomial, complete ionization occurs, i.e. the probability
of finding the electron in any fixed region goes to zero as t→ ∞.

For ψ(x, t = 0) compactly supported and general periodic fields, we
decompose ψ(x, t) into uniquely defined resonance terms and a remainder.
Each resonance is 2π/ω periodic in time and behaves like the exponentially
growing Green’s function near x = ±∞. The remainder is given by an
asymptotic power series in t−1/2 with coefficients varying with x.

1 Introduction

The ionization of an atom by an electromagnetic field is one of the central prob-
lems of atomic physics. There are a variety of approximate methods for treating
this problem, including perturbation theory (Fermi’s golden rule), numerical in-
tegration of the time-dependent Schrödinger equation and semi-classical phase
space analysis leading to stochastic ionization [3, 5, 18, 21, 22, 25]. Rigorous
approaches include Floquet theory and complex dilations [18, 19, 37, 2]. Despite
this, there are few exact results available for the ionization of a bound particle
by a realistic time-periodic electric field of dipole form ~E(t) · ~x (an AC-Stark
field) for fields of arbitrary strength. The most realistic results we are aware of
are based on complex scaling [18, 19, 37] and show ionization (for small electric
field) of certain bound states of the Coulomb atom as well as defining resonances
in some regions of the complex energy plane.

The lack of rigorous results for large electric fields is true not only for realistic
systems with Coulombic binding potential, but even for model systems with
short range binding potentials [3, 5, 17]. The most idealized version of the
latter has an attractive δ-function potential in 1 dimension. The unperturbed
Hamiltonian H0 = −∂2

x − 2δ(x) has a bound state φ0(x) = e−|x| with energy
E0 = −1, and explicitly known continuum states [9]. This model has been
studied extensively in the literature, but the only rigorous results (known to
us) concerning ionization involve short range external forcing potentials rather
than dipole interaction; see however [4, 15, 24] for some rigorous bounds on

1



the ionization probability by a dipole potential for finite time pulses. Detailed
results for compactly supported forcings were obtained in [8, 9, 28, 6]. In this
work we develop techniques to deal with physically realistic dipole interactions.

We consider the time evolution of a particle in one dimension governed by
the Schrödinger equation (in appropriate units) with a time-periodic dipole field:

i∂tψ(x, t) =

(

− ∂2

∂x2
− 2δ(x)

)

ψ(x, t) + E(t)xψ(x, t) (1.1a)

ψ(x, 0) = ψ0(x) ∈ L2(R) (1.1b)

We prove the following result.

Theorem 1 (Ionization) Suppose E(t) is a trigonometric polynomial, i.e.

E(t) =

N
∑

n=1

(

Ene
inωt + Ene

−inωt
)

. (1.2)

Then for any ψ0(x) ∈ L2(R) ionization occurs, i.e. for ψ(x, t) solving (1.1),

lim
t→∞

∫ L

−L

|ψ(x, t)|2dx = 0, ∀L ∈ R
+ (1.3)

If ψ0(x) ∈ L1(R) ∩ L2(R), then the approach to zero is at least as fast as t−1.

When E(t) is not a trigonometric polynomial (i.e. N = ∞ in (1.2)), the
Floquet Hamiltonian may have time-dependent bound states and ionization
may fail. This is uncommon, but there are examples of time periodic operators
where such bound states exist [9, 27].

A key part of the proof of Theorem 1 is a theorem characterizing the struc-
ture of ψ(x, t). This result holds even if N = ∞ in (1.2). We first need a
definition.

Definition 1.1 For the system described by (1.1), a Gamow vector is a classical
solution of Floquet eigenvalue equation with ℜσ̌k ∈ [0, ω)1:

(

−i∂t −
∂2

∂x2
− 2δ(x) + E(t)x− σ̌k

)

Φk,0(x, t) = 0 (1.4a)

Φk,0(x, t) = Φk,0(x, t+ 2π/ω), (1.4b)

subject to a radiation boundary condition at x = ±∞:

Φk,0(x, t) =

{
∑

n ψ
L
n e

i
√

σ̌k+nωxe−inωte−ib(t)x−ia(t) x ≤ 0
∑

n ψ
R
n e

−i
√

σ̌k+nωxe−inωte−ib(t)x−ia(t) x ≥ 0
(1.4c)

1We make this restriction due to the time-modulation invariance of (1.4). If Φk,0(x, t)
solves (1.4), then einωtΦk,0(x, t) also solves (1.4) if we replace σ̌k by σ̌k + nω.
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The functions a(t) and b(t) are defined in (1.8), and are necessary to account
for the presence of the E(t)x potential. The square root is chosen to have a
branch cut on −iR+ and maps R+ into R+.

A generalized Gamow vector Φk,j(x, t) solves the equation:

(

−i∂t −
∂2

∂x2
− 2δ(x) + E(t)x − σ̌k

)

Φk,j(x, t) = Φk,j−1(x, t) (1.5)

By definition, Φk,−1(x, t) = 0.

Remark 1.2 For ℑσ̌k ≥ 0, (1.4c) implies that solutions to (1.4) revert to or-
dinary L2([0, 2π/ω] × R)-eigenvalues of the Floquet Hamiltonian. This implies
that solutions of (1.4) with ℑσ̌k > 0 are impossible; if such solutions existed,
that would contradict the L2-self-adjointness of (1.4a). When ℑσ̌k = 0, Gamow
vectors revert to being L2([0, 2π/ω] × R) solutions of (1.4a), and ψR,L

n = 0 for
n ≥ 0 (otherwise Φk,0(x, t) would not be in L2). When ℑσ̌k < 0 the terms in
(1.4c) become exponentially growing near x = ±∞, and no exponentially de-
caying terms are present. This is what distinguishes Gamow vectors from other
solutions to (1.4a) and (1.4b).

In fact, one can construct exponentially growing solutions of (1.4a) for all
σ. Such solutions would have both growing and decaying terms on at least
one side of zero, and therefore fail to satisfy (1.4c). This makes the radiation
boundary condition (1.4c) crucial in defining Gamow vectors and resonances
[25, 31, 20, 32, 36]. These boundary conditions define σ̌k and Φk,j(x, t) uniquely.
Theorem 2 (below) shows that these Gamow vectors are directly connected to
the time behavior of ψ(x, t).

Theorem 2 Suppose ψ0(x) is compactly supported and in H1 and E(t) is smooth
and time periodic. Then, the solution ψ(x, t) of (1.1), can be uniquely (for fixed
M) decomposed as:

ψ(x, t) =

M
∑

k=0

nk
∑

j=0

αk,jt
je−iσ̌ktΦk,j(x, t) + ΨM (x, t) (1.6)

The resonance energies σ̌k satisfy ℑσ̌k ≤ 0, and are ordered according to ℑσ̌k+1 ≤
ℑσ̌k. The resonant states Φk,j(x, t) are the Gamow vectors (generalized, if
j > 0), as per Definition 1.1.

In (1.6), we collect the M resonances with ℑσ̌k closest to zero, and M must
be large enough so that we collect all resonances σ̌k with ℑσ̌k = 0. The number
of Gamow vectors (and resonances) may be infinite, but we can only include
finitely many of them in (1.6).

The remainder ΨM (x, t) has the following asymptotic expansion in time:

ΨM (x, t) ∼
∑

j∈Z

eijωt
∞
∑

n=1

Dj,n(x)t−n/2 (1.7)
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This expansion is uniform on compact sets in x, but not in L2. In general,
Dj,n(x) is not in L2.

Uniqueness of the decomposition is defined relative to the analytic structure
of ψ(x, t): the Zak transform of ψ(x, t) has poles at σ = σ̌k (with residues
proportional to Φk,j(x, t)), while ΨM (x, t) has Zak transform that is analytic
on the region {σ : ℜσ ∈ (0, ω),ℑσ > ℑσ̌M}. The Zak transform is defined in
Section 3.

Gamow vectors have a long history in quantum mechanics, dating back to
[16, 13, 25]. They were first introduced by Gamow, who used them to study
tunneling rates. Definition 1.1 is an extension of the usual definition of Gamow
vectors; a Gamow vector for a compactly supported potential (on [−L,L]) is
typically defined as a classical solution of the equation [−∂2

x+V (x)−µ]Φ(x) = 0
having the behavior Φ(x) = ψLei

√
µx for x < −L and Φ(x) = ψRe−i

√
µx for

x > L (with µ the corresponding complex eigenvalue). The usual interpretation
(see [32, 25] for an operator theoretic perspective) states that the real part of µ
is the energy of a Gamow vector, while the imaginary part is the decay rate. In
spite of their age and usefulness in making experimental predictions, rigorous
justification of the use of Gamow vectors is still lacking (see, however [32]).
Theorem 2 provides a rigorous definition of resonances and ionization rates
for the case we consider, and is thus a step towards making Gamow vectors
completely rigorous.

The remainder term ΨM (x, t), which we shall term the dispersive part, in-
corporates any resonances σ̌k with k > M (if such resonances exist), as well as
the integral around a branch point which gives rise to the polynomially decaying
component. The resonant states Φk,j(x, t) are the residues of the poles of that
same function (M can not be greater than the total number of poles). This is
equivalent (via (3.7)) to the requirement that the Laplace transform of ΨM (x, t)
is analytic for ℑp > −γM except for an array of branch points on the periodic
array p = nω, n ∈ Z (with p dual to t).

We believe the dispersive part ΨM (x, t) is Borel summable, although this
does not follow from our results. To show this, one needs to find exponential
bounds on Z[ψ(0, t)](σ, t) as ℑσ → −∞, which would also show that there is
only one resonance σ̌0, the analytic continuation of the bound state.

Remark 1.3 Define γk = −ℑσ̌k; for small values of γk, 2γk gives the dominant
part of the ionization rate for the k-th resonance. The smallest rate, γ0, gives
the overall ionization rate for most experimentally relevant times [3]. We are
only aware of one experiment where the dispersive part of the wavefunction
has actually been observed experimentally [29], although under significantly
different physical conditions2. In most experiments the dispersive part is small
enough to be safely neglected, and is in fact very difficult to measure.

Remark 1.4 If ψ0(x) is not compactly supported a similar decomposition to
(1.6) can be computed, but with extra terms coming from singularities of the

2In [29], the authors studied luminescent decay of dissolved organic materials after a pulsed
laser excitation, and observed polynomial decay after all exponential terms had vanished.
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Fourier transform of ei∂2
xtψ0(x) (with respect to t). These terms are present

even in the absence of a potential, and are therefore not resonances.

1.1 Small Field Limit

Replacing E(t) by ǫE(t), σ̌0 and Φ0,0(x, t) have convergent power series expan-
sions in ǫ when ω−1 6∈ N. When ǫ → 0, we have e−iσ̌0tΦ0,0(x, t) → eite−|x|

(pointwise), the bound state of H0 and Ψ1(x, t) goes to the projection of ψ(x, t)
on the continuum states of H0. This shows that the first resonance is the
analytic continuation in ǫ of the bound state. This rigorously justifies some
standard physics calculations in [13, 16, 25] (see also the forthcoming work [36],
from which we drew inspiration). The Fermi golden rule and multiphoton gen-
eralizations can be recovered in our formalism through perturbation theory.

All other resonances come from σ = −i∞, i.e. as ǫ→ 0, γk → ∞ for k ≥ 1.
We conjecture that states with k > 0 (which do not exist when ǫ = 0) do not
exist regardless of ǫ. Indeed, in all other cases considered [8, 9], such states do
not exist, but our technique does not rule them out. See Remark 3.15 for more
details on this point.

1.2 Equivalent formulations

Here we describe some equivalent formulations of (1.1). This material is essen-
tially taken from chapter 7 of [11]. We will use (1.10) in the proof of Theorem 1
and (1.9) in the proof of Theorem 2. We first define some auxiliary functions:

a(t) =

∫ t

0

b(s)2ds ≡ a0t+ av(t) (1.8a)

b(t) =

∞
∑

n=1

(

En

inω
einωt +

Ēn

−inωe
−inωt

)

(1.8b)

c(t) = 2
∞
∑

n=1

(

En

(inω)2
einωt +

Ēn

(−inω)2
e−inωt

)

≡
∞
∑

n=1

(

Cne
inωt + C̄ne

−inωt
)

(1.8c)

where av(t) is 2π/ω periodic and has mean 0, and a0 = (ω/2π)
∫ 2π/ω

0
b(s)2ds.

Note that (1/2)c′′(t) = b′(t) = E(t).
Define ψv(x, t) ≡ e+ia(t)e+ib(t)(x−c(t))ψ(x − c(t), t); then the following equa-

tion for ψv is equivalent to (1.1):

i∂tψv(x, t) =

(

− ∂2

∂x2
− 2δ(x− c(t))

)

ψv(x, t) (1.9)

This is the velocity gauge, and the equivalence can be verified by a computation3.
Similarly, there is an equivalent equation in the magnetic gauge. We obtain it

3Equation (1.9) differs from what one finds in [11]. In [11], the authors take b̃(t) =
R t
0

E(s)ds and c̃(t) =
R t
0

b(t)dt, which imply that c̃(t) = c(t) + c0 + cvt. This does not
change the essential feature that (1/2)c′′(t) = b′(t) = E(t).
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by setting ψB(x, t) = e+ia(t)e+ib(t)xψ(x, t):

i∂tψB(x, t) =

(

− ∂2

∂x2
− 2δ(x) + 2ib(t)∂x

)

ψB(x, t) (1.10)

Remark 1.5 Suppose that either ψB(x, t) or ψv(x, t) are time-periodic solu-
tions of (1.10) or (1.9). Then ψ(x, t) is a time quasi-periodic solution of (1.1),
and eia0tψ(x, t) is time-periodic.

These computations are formal, and we must show that at least one of (1.1),
(1.9) or (1.10) are well posed. This is shown in Appendix C. Once one is well
posed, all are, simply by applying the unitary gauge transformations.

1.3 Organization of the Paper

The paper is organized in the following way. In Section 2, we assume Theorem
2 to be true and use it to prove Theorem 1. In Section 3 we prove Theorem 2.
In Section 4 we make some concluding remarks, and discuss possible directions
of future research. Some technical material is presented in the appendices.

2 Ionization

Based on Theorem 2, we will show that the Floquet equation (1.4) in the mag-
netic gauge has no nonzero solutions with ℑσ = 0 which decay at x = ±∞.
This implies ionization for compactly supported initial data. Ionization follows
for all initial data in L2(R) by a simple application of the following well known
result to the operator family T (t) = 1[−L,L](x)U(t) (with U(t) the propagator
for (1.1)):

Proposition 2.1 If T (t) is a uniformly bounded family of operators on L2(R),
and if T (t)u → 0 for u in a dense subset of L2(R), then T (t)u → 0 for all
u ∈ L2(R).

In Section 2.1, we solve (1.10) without a binding potential (the −2δ(x) term)
and characterize the solutions. We then assume that a bound state Φk,0(x, t)
exists, expand it in an appropriate basis, and derive necessary conditions on the
coefficients to meet the boundary conditions (decay at x = ±∞ and continuity
at x = 0).

In Section 2.2, we use the characterization of solutions we constructed in
Section 2.1 and show for E(t) a trigonometric polynomial that there are no con-
tinuous, nonzero solutions to (1.10) which vanish at x = ±∞. The basic tech-
nique is to analytically continue, in the t variable, both ψB(0−, t) and ψB(0+, t)
(which must coincide) and use the Phragmen-Lindelöf theorem to show that an
associated function must be entire and bounded (and therefore constant). This
implies that any localized solution to (1.4) is zero, and ionization occurs.
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2.1 Solutions to the free problem

By Theorem 2, we need to show that (1.4) has no nontrivial solutions. In the
magnetic gauge, this is the same as showing that if Φk,0(x, t) solves

σ̌kΦk,0(x, t) = (−i∂t − ∂2
x − 2δ(x) + 2ib(t)∂x)Φk,0(x, t), (2.1)

is time periodic and decays at x = ±∞, then Φk,0(x, t) = 0.
We begin by solving (2.1) without the δ-function binding potential (and

letting σ = σ̌k, which causes no confusion in this section),

σψ(x, t) = (−i∂t − ∂2
x + 2ib(t)∂x)ψ(x, t) (2.2)

Taking ψ(x, t) = eλxϕλ(t) as an ansatz, we obtain an ODE for ϕλ(t):

∂tϕλ(t) = −i
(

−σ − λ2 + 2iλb(t)
)

ϕλ(t) (2.3)

This has the following family of solutions (recalling that c′(t) = 2b(t)):

ϕλ(t) = e−iEλteλc(t) (2.4)

Eλ = −σ − λ2

To ensure 2π/ω periodicity in time, we must have (−σ−λ2) = mω, m ∈ Z. This
implies that λ = ±i

√
mω + σ (with the branch cut of

√
z taken to be −iR+).

Therefore, (2.2) has the family of solutions:

ϕm,±(x, t) = e±λmxe−imωte±λmc(t) (2.5a)

λm = −i
√
σ +mω (2.5b)

2.2 Matching solutions

Given the family of solutions to (2.2), we can attempt to solve (1.10). Applying
Theorem 2, we have three boundary conditions to satisfy:

Φk,0(0, t) = Φk,0(0−, t) = Φk,0(0+, t) (2.6a)

∂xΦk,0(0+, t) − ∂xΦk,0(0−, t) = −2Φk,0(0, t) (2.6b)

lim
x→∞

Φk,0(−x, t) = lim
x→∞

Φk,0(+x, t) = 0 (2.6c)

Consider now a solution Φk,0(x, t). We can expand (formally) Φk,0(x, t) in
terms of the functions ϕm,± in the regions x < 0 and x > 0 separately4:

Φk,0(x, t) =

{ ∑

m∈Z
(ψL

m,+ϕm,+(x, t) + ψL
m,−ϕm,−(x, t)), x ≤ 0

∑

m∈Z
(ψR

m,+ϕm,+(x, t) + ψR
m,−ϕm,−(x, t)), x ≥ 0

(2.7)

For m ≥ 0 (recalling σ̌k ∈ [0, ω) and examining (2.5b)), the functions

ϕm,±(x, t) are oscillatory in x as x → ±∞. Thus, if the coefficients ψL,R
m,±

4The validity of the expansion is proved in Lemma B.2 in Appendix B.

7



(m ≥ 0) were not zero, then Φk,0(x, t) would not decay as x → ±∞, violating
(2.6c).

Similarly, we observe that ϕm,+(x, t) are exponentially growing when m < 0
as x → +∞, so ψR

m,+ must similarly be zero. The same argument applied to

the region x < 0 shows that ψL
m,+ must be zero when m < 0. Therefore after

dropping the ± in the coefficients ψL,R
m,±, we obtain the result we seek.

Thus, we find that we can actually write Φk,0(x, t) as:

Φk,0(x, t) =

{
∑

m<0 ψ
L
mϕm,+(x, t), x ≤ 0

∑

m<0 ψ
R
mϕm,−(x, t), x ≥ 0

(2.8)

with both sequences ψL,R
m in l2. Although this derivation is purely formal, it is

proved in Appendix B. It also motivates (1.4c).
Substituting (2.8) into the continuity condition (2.6a) yields:

∑

m<0

ψL
me

−imωteλmc(t) =
∑

m<0

ψR
me

−imωte−λmc(t) (2.9)

Proposition 2.2 Suppose E(t) is a trigonometric polynomial with highest mode

N , that is E(t) =
∑N

n=1(Ene
inωt + Ēne

−inωt). Set z = e−iωt. Then Φk,0(0, t)
has the decomposition:

Φk,0(0, t) = f(z) + g(z−1) (2.10)

The functions f(·) and g(·) are entire functions of exponential order 2N , and
g(0) = 0. This shows in particular that Φk,0(0, t) is continuous.

The correspondence between Φk,0(0, t), f(z) and g(z) is as follows. Let ψj

denote the j′th Fourier coefficient of Φk,0(0, t), that is Φk,0(0, t) =
∑

j ψje
ijωt.

Then letting fj, gj be the Taylor coefficients of f(z), g(z), we find fj = ψ−j for
j ≥ 0 and gj = ψj for j < 0.

The proof of this fact uses results from Section 3, and is deferred to Appendix
A. Finally, we state a result we use, proved in most complex analysis textbooks,
e.g. [35].

Theorem 3 (Phragmen-Lindelöf) Let f(z) be an analytic function of ex-

ponential order 2N , that is |f(z)| ≤ CeC′|z|2N

. Let S be a sector of opening
smaller than π/2N . Then:

sup
z∈∂S

|f(z)| ≥ sup
z∈S

|f(z)|

We are now prepared to prove the main result.
Proof of Theorem 1.

We describe first the case N = 1 now (i.e. E(t) = E cos(ωt); the case of
arbitrary N is treated below). The key idea is that we can use (2.8) and (2.9)
to obtain an asymptotic expansion of Φk,0(0+, t) and Φk,0(0−, t) in the open
right and left half planes in the variable z = e−iωt. To leading order as |z| →
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∞ in the left and right half planes (respectively), Φk,0(0−, t) ∼ ψL
mz

me−C|ℜz|

and Φk,0(0+, t) ∼ ψR
mz

me−C|ℜz| (note that m and C may be different). This
asymptotic expansion shows that f(z) decays exponentially along any ray z =
reiφ in the open left or right half planes.

In fact, the asymptotic expansion allows us to observe that f(z) (the part
of Φk,0(0, t) which is analytic in z) must be bounded except possibly on the line
iR. Theorem 3 combined with Proposition 2.2 allow us to conclude that f(z) is
bounded on the line iR. This shows f(z) is bounded on C and hence zero.

Since f(z) is zero, Φk,0(0, t) = g(z) ∼ gMz−M for some M ∈ N (since g(z)
is analytic). But we previously showed also that Φk,0(0, t) ∼ ψL

mz
me−C|ℜz|.

Two asymptotic expansions must agree to leading order; the only way this can
happen is if g(z) = Φk,0(0, t) = 0.

The main difference between the case N = 1 (monochromatic field) and N >
1 (polychromatic field) is that instead of the exponential asymptotic expansions
being valid in the left and right half planes, they are valid in sectors of opening
π/N ; to show this we need to apply Theorem 3 to the boundaries of these
sectors.

We now go through the details.
Step 1: Setup
Let Φk,0(x, t) be a solution to (1.4). By the hypothesis of Theorem 1, we

let E(t) be a nonzero trigonometric polynomial of order N . Let z = e−iωt. Let

C(z) =
∑N

j=1

(

C̄jz
j + Cjz

−j
)

where the Cj are the coefficients from (1.8c). We
apply Proposition 2.2 to Φk,0(0, t) and (2.9) to obtain:

Φk,0(0, t) = f(z) + g(z−1)

=
∑

m<0

ψL
mz

me+λmC(z) =
∑

m<0

ψR
mz

me−λmC(z) (2.11)

The first equality holds by (2.10), the second by (2.8) with x = 0. A priori,
equality holds only when |z| = 1. However, both of the latter two sums are
analytic in any neighborhood of the unit circle in which they are uniformly
convergent. Thus, f(z) + g(z−1) is the analytic continuation of the sum if the
sum is convergent in some neighborhood containing part of the unit disk.

For the rest of this proof, we make the following convention. The functions
ψL,R(z) are defined by

ψL(z) =
∑

m<0

ψL
mz

me+λmC(z) (2.12a)

ψR(z) =
∑

m<0

ψR
mz

me−λmC(z) (2.12b)

for those z for which the sum is convergent.
Step 2: Convergence of the sum
We show now that the sum in (2.11) is convergent in a sufficiently large

region.
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For |z| ≥ 1 and ℜC(z) > 0, consider the sum
∑

m<0 ψ
R
mz

me−λmC(z). In

this region, since ℜC(z) > 0, we find that eλmC(z) ≤ 1. The coefficients ψL,R
m

are bounded uniformly in m (since they form an l2 sequence). For |z| > 1,
zm is geometrically decaying as m → −∞. Therefore the series is absolutely
convergent when |z| > 1 and ℜC(z) > 0.

The same statement holds with
∑

m<0 ψ
L
mz

me+λmC(z) in the region where
ℜC(z) < 0.

Let us define the following sets:

S+ = Connected component of S1 in {z ∈ C : |z| ≥ 1,ℜC(z) > 0}

S− = Connected component of S1 in {z ∈ C : |z| ≥ 1,ℜC(z) < 0}
A plot indicating the structure of these sectors (for a particular choice of C(z))
is shown in Figure 1 for the case where N = 2.

By Proposition 2.2, we see that ψR(z) is analytic in S+ and ψL(z) is analytic
in S−, since the sum in (2.12) is convergent there.

We now show that S+ and S− must be unbounded since C(z) is not constant.
First, note that C(z) = C(z̄−1). As in the Schwarz reflection principle, define
B = S+ ∪ (S̄+)−1. Clearly, ℜC(z) = 0 for z ∈ ∂B. If S+ is bounded, then B is
bounded as well. By the real max modulus principle, ℜC(z) must be zero inside
B, and hence ℜC(z) is bounded everywhere, which is impossible.

Finally we show that the regions S+ and S− “fill out” to open sectors as
|z| → ∞. That is to say, if S is some sector in which ℜzN > 0, then for any ray
{reiθ : r > 1} contained in S, there exists R = R(θ) so that the truncated ray
{reiθ : r > R(θ)} ⊂ S+.

Without loss of generality5, let us suppose that CN ∈ R+. For very large
|z|, we write C(z) =

∑N
j=1 C̄jz

j + Cjz
−j = C̄Nz

N + O(zN−1). Then setting

z = reiθ , we find that r−N
C(reiθ) = C̄Ne

iNθ + O(r−1). Thus, for r sufficiently
large and Nθ 6= (2m+1)π/2, we find that r−NC(reiθ) has either strictly positive
real part or strictly negative real part. In particular, if |Nθ ∓ π/2| > ǫ, then
there exists an R = R(ǫ, θ) so that ℜr−NC(reiθ) is bounded strictly away from
zero.

Motivated by the above, we define the following subsets of C (with j =
0 . . .N − 1):

A+
j,ǫ = {reiθ : r ≥ R(ǫ, θ),

θ ∈ [−π/2N + 2πj/N + ǫ, π/2N + 2πj/N − ǫ]} (2.13a)

A−
j,ǫ = {reiθ : r ≥ R(ǫ, θ),

θ ∈ [−π/2N + 2π(j + 1/2)/N + ǫ, π/2N + 2π(j + 1/2)/N − ǫ]} (2.13b)

5Suppose CN = ρeiθ. Then rather than choosing z = eiωt, we would substitute z =
ei(ωt−θ/N).
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Clearly, for sufficiently large R, A+
j,ǫ \BR ⊂ S+ and A−

j,ǫ \BR ⊂ S−. Here, BR

is the ball of radius R about z = 0.
Step 3: Asymptotics of f(z)
We now show that f(z) = 0. We begin by writing f(z) as follows:

f(z) =

∞
∑

n=0

fnz
n = −

∞
∑

n=1

gnz
−n +

∑

m<0

ψR
mz

me−λmC(z), z ∈ S+ (2.14a)

f(z) =

∞
∑

n=0

fnz
n = −

∞
∑

n=1

gnz
−n +

∑

m<0

ψL
mz

me+λmC(z), z ∈ S− (2.14b)

We let Sk, k = 0, . . . , 2N + 1 be a set of sectors of opening π/(2N + 1)
arranged in such a way that the boundaries of Sk avoid the rays reiπ(2j+1)/2N .
Therefore, for sufficiently large |z|, the boundaries of Sk are contained in either
A+

j,ǫ or A−
j,ǫ except for a compact region. On ∂Sk, f(z) is decaying as |z| → ∞,

by a simple examination of (2.14). Since f(z) is entire (unlike ψ(z)), f(z) is
also bounded on ∂Sk even for small z.

We have shown that f(z) is bounded on ∂Sk. Applying the Phragmen-
Lindelöf theorem, f(z) is therefore bounded on Sk. Since ∪2n+1

k=0 Sk = C, we find
f(z) is constant. Since we know that along any ray contained in A±

j,ε, f(z) is
decreasing, we know f(z) = 0.

Step 4: Asymptotics of g(z)
We now show that g(z) = 0. We rewrite (2.14) with g(z) on the left side.

∞
∑

n=1

gnz
−n =

∑

m<0

ψR
mz

me−λmC(z), z ∈ S+ (2.15a)

∞
∑

n=1

gnz
−n =

∑

m<0

ψL
mz

me+λmC(z), z ∈ S− (2.15b)

Since the left sides of (2.15a) and (2.15b) are (convergent) asymptotic power
series (for sufficiently large |z|), while the right sides of (2.15a) and (2.15b) are
(convergent) asymptotic series of exponentials, we find that the right side decays
much faster than the left side. This is impossible unless both sides are zero. �

3 The Floquet Formulation

In this section we prove Theorem 2. To do so we consider the function Y (t) =
ψ(0, t) and derive a closed integral equation for it via Duhamel’s formula. Com-
puting the Zak transform in time of this equation yields an integral equation
of compact Fredholm type for Z[Y ](σ, t), the Zak transform of Y (t). The in-
tegral operator is shown to be analytic in σ; the analytic Fredholm alternative
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to this equation shows that Z[Y ](σ, t) is meromorphic6 in σ1/2 for ℜσ ∈ [0, ω).
The poles corresponds to resonances or bound states, while the branch point at
σ = 0 corresponds to the dispersive part of the solution.

In Section 3.3 we extend these results from x = 0 to the entire real line. We
show that the wavefunction can be decomposed in the form (1.6). If ℑσ̌k = 0,
then ℜσ̌k ∈ (0, ω) and Φk,0(x, t) corresponds to a Floquet bound state. The
remainder ΨM (x, t) decays with time, in particular |ΨM (x, t)| = O(t−1/2) (or
faster) as t→ ∞, though not uniformly in x.

3.1 Setting up the problem

We work in the velocity gauge. We rewrite (1.9) in Duhamel form, using the

Green’s function for the free Schrödinger equation, (4πit)−1/2eix2/4t:

ψv(x, t) = ψv,0(x, t)

+ 2i

∫ t

0

∫

R

exp

(

i(x− x′)2

4(t− t′)

)

δ(x′ − c(t′))ψv(x′, t′)dx′
dt′

√

4πi(t− t′)
(3.1)

where we have defined:

ψv,0(x, t) = ei∂2
xtψv(x, 0) =

∫

R

(4πit)−1/2ei|x−x′|2/4tψv(x
′, 0)dx′

Computing the x′ integral explicitly and changing variables to s = t− t′ yields:

ψv(x, t) = ψv,0(x, t)

+ 2i

∫ t

0

exp

(

i(x− c(t− s))2

4s

)

ψv(c(t− s), t− s)
ds√
4πis

(3.2)

We now substitute x = c(t), to obtain a closed equation for ψv(c(t), t):

ψv(c(t), t) = ψv,0(c(t), t)

+

√

i

π

∫ t

0

exp

(

i(c(t) − c(t− s))2

4s

)

ψv(c(t− s), t− s)
ds√
s

(3.3)

Letting Y0(t) = ψv,0(c(t), t) and Y (t) = ψ(c(t), t) for t ≥ 0 (both are set
equal to 0 for t < 0) we obtain:

Y (t) = Y0(t) +

√

i

π

∫ t

0

exp

(

i(c(t) − c(t− s))2

4s

)

Y (t− s)
ds√
s

(3.4)

The main tool of our analysis will be the Zak transform.

6The branch point at σ = 0 is repeated at σ = nω, n ∈ Z, due to the pseudo-periodicity of
the Zak transform, c.f. (3.6c). This also makes it sufficient to consider only ℜσ ∈ [0, ω).
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Definition 3.1 Let f(t) = 0 for t < 0 and |f(t)| ≤ Ceαt for some α > 0. Then
f(t) is said to be Zak transformable. The Zak transform of f(t) is defined (for
ℑσ > α) by:

Z[f ](σ, t) =
∑

j∈Z

eiσ(t+2πj/ω)f(t+ 2πj/ω) (3.5)

and by the analytic continuation of (3.5) when ℑσ < α, provided that the ana-
lytic continuation exists (treating Z[f ](σ, t) as a function of σ taking values in
L2([0, 2π/ω], dt)).

Proposition 3.2 Z[f ](σ, t) has the following properties:

f(t) = ω−1

∫ iβ+ω

iβ

e−iσtZ[f ](σ, t)dσ (3.6a)

If Z[f ](σ, t) is singular for ℑσ = β, this integral is interpreted as the limit of
integrals over the contours [i(β + ǫ), i(β + ǫ) + ω] as ǫ→ 0 from above.

Z[f ](σ, t+ 2π/ω) = Z[f ](σ, t) (3.6b)

Z[f ](σ + ω, t) = eiωtZ[f ](σ, t) (3.6c)

If p(t) is 2π/ω-periodic, then:

Z[pf ](σ, t) = p(t)Z[f ](σ, t) (3.6d)

With the exception of (3.6a), these results all follow immediately from (3.5).
See Remark 3.5 for an explanation of (3.6a).

Remark 3.3 Suppose f(t) is Zak transformable, and uniformly bounded in
time (α = 0). Suppose further that the analytic continuation of Z[f ](σ, t) has
a singularity (say at σ = 0). Then (3.6c) still holds, in the sense that for any
direction θ, Z[f ](σ + ω + 0eiθ, t) = eiωtZ[f ](σ + 0eiθ, t).

Remark 3.4 More information on the Zak transform can be found in, e.g., [12,
p.p. 109-110]. Our definition differs slightly from that in [12] by allowing σ to
take complex values.

Remark 3.5 One can relate the Zak and Fourier transforms as follows. Let
f̂(k) =

∫

eiktf(t)dt denote the Fourier transform of f(t). Then:

Z[f ](σ, t) =
ω

2π

∑

n∈Z

f̂(σ + nω)e−inωt (3.7)

The Poisson summation formula, applied to (3.5), yields (3.7). Eq. (3.6a) fol-
lows immediately from (3.7). This relation implies that our approach is equiv-
alent to the Fourier/Laplace transform analysis done in [7, 8, 1]. The Zak
transform is used simply for algebraic convenience.
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We proceed as follows. Applying the Zak transform to (3.4) yields an integral
equation of the form

y(σ, t) = y0(σ, t) +K(σ)y(σ, t) (3.8)

with y(σ, t) = Z[Y ](σ, t), y0(σ, t) = Z[Y0](σ, t) and K(σ) the Zak transform of
the integral operator in (3.4). K(σ) will be shown to be meromorphic in σ as
a compact operator family from L2(S1, dt) → L2(S1, dt), except for a branch
point at σ = 0.

We then use the Fredholm alternative theorem to invert (1 −K(σ)). Once
this is done, we find:

y(σ, t) = (1 −K(σ))−1y0(σ, t) (3.9)

The poles of (1−K(σ))−1 correspond to resonances, and a branch point at σ = 0
corresponds to the dispersive part of the solution, i.e. the part with polynomial
decay in t−1/2.

To begin, we determine the analyticity properties of Z[Y0](σ, t).

Proposition 3.6 Suppose ψ0(x) is smooth and compactly supported. Then near
σ = 0, y0(σ, t) has the expansion:

Z[Y0](σ, t) = y0(σ, t) =
1

2
σ−1/2

∫

R

ψ0(x)dx + f(σ, t) (3.10)

The function f(σ, t) is analytic in σ1/2 for ℜσ ∈ [0, ω) (there are similar branch
points at σ = nω), and is in L2(S1, dt) for each σ. Also, for some constants C1

and C2, we have
‖Z[Y0](σ, t)‖L2(S1

ω,dt) ≤ C1e
C2|ℑσ|

Here, S1
ω = R/(2π/ω)Z is the set [0, 2π/ω] with periodic boundaries.

The same conclusion follows for Z[ψ(x+ c(t), t)](σ, t) for any fixed x.

Proof. We can write out Y0(t) using the Fourier transform as:

Y0(t) = χR+(t)

∫

R

eikc(t)eik2tψ̂0(k)dk
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Computing the Zak transform yields:

Z[Y0](σ, t) =
∑

j∈Z

eiσ(t−2πj/ω)χR+(t− 2πj/ω)

∫

R

eikc(t)eik2(t−2πj/ω)ψ̂0(k)dk

=

∫

R

eikc(t)ψ̂0(k)





∑

j∈Z

eiσ(t−2πj/ω)eik2(t−2πj/ω)χR+(t− 2πj/ω)



dk

=

∫

R

eikc(t)ψ̂0(k)

[

∑

n∈Z

e−inωt

i(k2 + σ + nω)

]

dk

= σ−1/2(1/2)

∫

R

ψ0(y)dy + σ−1/2(1/2)

∫

R

(e−
√

σ|c(t)−y| − 1)ψ0(y)dy

+
∑

n6=0

e−inωt

2
√
σ + nω

∫

R

e−
√

σ+nω|c(t)−y|ψ0(y)dy (3.11)

The interchange of the sum and integral between lines 1 and 2 is justified (for
ℑσ > 0 and t fixed) since the sum over j is absolutely convergent, as the integral
over k is bounded and uniformly convergent with respect to k.

The change inside the square brackets between lines 2 and 3 comes from
the Poisson summation formula in the t variable, and the fact that the Fourier
transform of χR+(t)ei(k2+σ)t is −i(k2 + σ + ζ)−1(with ζ dual to t).

The first term on the right side of (3.11) agrees with that in (3.10). Since
(e−

√
σ|c(t)−y|− 1) is analytic in σ1/2 and has no constant term, the second term

is analytic in σ1/2. The third term is analytic in σ. When added together, these
terms become f(σ, t) which is analytic in σ1/2. The result is valid for arbitrary
σ by analytic continuation.

Since ψ0(x) is supported on a compact region, |c(t) − y| is bounded (say by
C2) and exponential growth follows. The result follows for all x by translation

invariance of ei∂2
xt. �

We now determine the Zak transform of the integral operator in (3.4) and
compute the resolvent of it.

3.2 Construction of the resolvent

We now apply the Zak transform to (3.4) to construct an equivalent integral
equation.

Proposition 3.7 Let f(t) be Zak transformable. Consider the integral operator:

KV f(t) =

√

i

π

∫ t

0

exp

(

i
(c(t) − c(t− s))2

4s

)

f(t− s)
ds√
s

(3.12)

For ℑσ > 0, define Z[KV f ](σ, t) = (K(σ)Z[f ])(σ, t). Then:

K(σ)f(σ, t) =

√

i

π

∫ ∞

0

exp

(

i
(c(t) − c(t− s))2

4s

)

eiσsZ[f ](σ, t− s)
ds√
s

(3.13)
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For ℑσ ≤ 0, we define K(σ) to be the analytic continuation of K(σ) (where it
exists).

Proof. We rewrite (3.12) as:

√

i

π

∫ t

0

exp

(

i
(c(t) − c(t− s))2

4s

)

f(t− s)
ds√
s

=

√

i

π

∫

R

exp

(

i
(c(t) − c(t− s))2

4s

)

f(t− s)χR+(s)
ds√
s

(3.14)

Applying Z to both sides of (3.14) yields

Z[KV f ](σ, t) =
∑

j∈Z

eiσ(t+2πj/ω)[KV f ](t+ 2πj/ω)

=

√

i

π

∑

j∈Z

eiσ(t+2πj/ω)

∫

R

exp

(

i
(c(t) − c(t− s))2

4s

)

f(t+ 2πj/ω− s)χR+(s)
ds√
s

=

√

i

π

∫

R

exp

(

i
(c(t) − c(t− s))2

4s

)

eiσs

×





∑

j∈Z

eiσ(t−s+2πj/ω)f(t− s+ 2πj/ω)



χR+(s)
ds√
s

=

√

i

π

∫ ∞

0

exp

(

i
(c(t) − c(t− s))2

4s

)

eiσsZ[f ](σ, t− s)
ds√
s

(3.15)

This is what we wanted to show. �

We now show that the operator K(σ), constructed above, is compact. We
decompose K(σ) as KF (σ) + KL(σ) (defined shortly), and treat each piece
separately.

Proposition 3.8 Define KF (σ) : L2(S1, dt) → L2(S1, dt) by:

KF (σ)f(t) =

√

i

π

∫ ∞

0

eiσsf(t− s)
ds√
s

Then, KF (σ) is compact and analytic for ℑσ > 0. It can be analytically con-
tinued to ℑσ ≤ 0, σ 6= 0, and the continuation has a σ−1/2 branch point at
σ = 0.

Proof. We compute this exactly by expanding f(t) in Fourier series and
interchanging the order of summation and integration:

√

i

π

∑

n∈Z

fne
−inωt

∫ ∞

0

ei(σ+nω)s ds√
s

=
∑

n∈Z

fn√
σ + nω

e−inωt (3.16)
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This is valid for ℑσ > 0, as well as ℑσ = 0 but in this case we must treat the
integral as improper.

Thus, in the basis e−inωt, this operator is diagonal multiplication by (σ +
nω)−1/2. Compactness follows since the diagonal elements decay in both direc-
tions. Analyticity for σ 6= 0 follows by inspection of the right side of (3.16), and
choosing the branch cut of

√
σ + nω to lie on the negative real line. �

Proposition 3.9 Define KL(σ) : L2(S1, dt) → L2(S1, dt) as:

KL(σ)f(t) =

√

i

π

∫ ∞

0

[

exp

(

i
(c(t) − c(t− s))2

4s

)

− 1

]

eiσsf(t−s) ds√
s

(3.17)

Then KL(σ) is compact for ℑσ ≥ 0 and analytic for ℑσ > 0. It has continuous
limiting values at ℑσ = 0.

Proof. We rewrite (3.17) as:

∫ 2π/ω

0

∞
∑

k=0

[

exp

(

i
(c(t) − c(t− s))2

4(s+ 2πk/ω)

)

− 1

]

eiσ(s+2πk/ω)

√

s+ 2πk/ω
f(t− s)ds (3.18)

If ℑσ ≥ 0, the summands decay at least as fast as k−3/2 as k → ∞. Each term
in the sum is continuous. Thus the sum is absolutely convergent to a smooth
function in t and s, which is analytic in σ (thus the limit is analytic except when
ℑσ = 0). The region of integration is compact, and so is KL(σ). �

We now analytically continue KL(σ) to the strip 0 < ℜσ < ω.

Proposition 3.10 Let K ′(σ) be the integral operator defined by:

K ′(σ)f(t) =

∫ 2π/ω

0

k′σ(t, s)f(t− s)ds (3.19a)

k′σ(t, s) =
ω

2πi

∫

C

eσp

1 − eωp−iωs

[

exp

(

(c(t) − c(t− s))2

4p

)

− 1

]

dp√
p

(3.19b)

where C is some contour along the real line in the upper half plane which avoids
the singularities of the integrand at p = 0 and p = i(s + 2πn/ω) (see the proof
for a specific example).

Then K ′(σ) is an analytic (in σ) family of compact operators for 0 < ℜσ <
ω, and vanishes as ℑσ → +∞. Furthermore, K ′(σ) is the analytic continuation
of KL(σ). Finally, for σ = −iλ (with ℜλ < 0) or σ = −iλ+ω, K(σ) is analytic
in the parameter λ1/2 or (σ − ω)1/2.

Proof.
Step 1: Analyticity
To perform the integral in (3.19b), we let γR(t) = tωR/2π for t ∈ R \

[−2π/ω, 2π/ω], and γR(t) = Rei[π−(ωt+2π)/4] for t ∈ [−2π/ω, 2π/ω]. That is,
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γR(t) travels along the real line, and circles upward around the disk of radius
R. The integral is then defined as limR→0

∫

γR
(·) dp.

To compute the behavior of the integral, simply take R = 2π/ω:

ω−1k′σ(t, s) =

∫

R+0i

eσp

1 − eωp−iωs

[

exp

(

(c(t) − c(t− s))2

4p

)

− 1

]

dp√
p

=

∫

γ

eσp

1 − eωp−iωs

[

exp

(

(c(t) − c(t− s))2

4p

)

− 1

]

dp√
p

+
2πi

ω
eiσs

[

exp

(

(c(t) − c(t− s))2

4is

)

− 1

]

1√
is

(3.20)

The integrand in the first term is analytic in t and s since p stays away from 0
(thus avoiding the essential singularity at p = 0). It is exponentially decaying
both for large positive p (at the rate e(σ−ω)p) and for large negative p (at the
rate e−σp). If ℜσ = 0 or ℜσ = ω, the integrand still decays at the rate p−3/2,
which is integrable.

The last term is integrable at s = 0 and analytic (in s) elsewhere. Thus,
k′σ(t, s) has only a singularity of order s−1/2, and is analytic elsewhere. This
shows that K ′(σ) is a compact family of operators, analytic on σ.

Step 2: Vanishing of the operator as ℑσ → +∞
We examine (3.20). The first term vanishes as ℑσ → ∞ by the Riemann-

Lebesgue lemma. The second term vanishes since eiσs does. Thus, k′σ(t, s) → 0,
and so does K ′(σ).

Step 3: Continuation of KL(σ)
To show that K ′(σ) = KL(σ) if ℑσ > 0, we simply move the contour of

integration in (3.19b) upward and collect residues:

∫

R+0i

eσp

1 − eωp−iωs

[

exp

(

(c(t) − c(t− s))2

4p

)

− 1

]

dp√
p

= lim
N→∞

[

∫

R+i2πN/ω

eσp

1 − eωp−iωs

[

exp

(

(c(t) − c(t− s))2

4p

)

− 1

]

dp√
p

+

N
∑

j=0

2πi

ω
eiσ(s+2πj/ω)

[

exp

(

(c(t) − c(t− s))2

4i(s+ 2πj/ω)

)

− 1

]

1
√

i(s+ 2πj/ω)

]

=

∞
∑

j=0

2πi

ω
eiσ(s+2πj/ω)

[

exp

(

(c(t) − c(t− s))2

4i(s+ 2πj/ω)

)

− 1

]

1
√

i(s+ 2πj/ω
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We then integrate this kernel against an L2(S1, dt) function f(t) and obtain:

∫ 2π/ω

0

√

i

π

ω

2πi

∞
∑

j=0

2πi

ω
eiσ(s+2πj/ω)

×
[

exp

(

(c(t) − c(t− s))2

4i(s+ 2πj/ω)

)

− 1

]

1
√

i(s+ 2πj/ω)
f(t− s)ds

=

√

i

π

∫ ∞

0

[

exp

(

i
(c(t) − c(t− s))2

4s

)

− 1

]

eiσsf(t− s)
ds√
s

This is in agreement with (3.17). Hence, K ′(σ) = KL(σ) for ℑσ > 0, ℜσ ∈ (0, ω)
and therefore K ′(σ) is the analytic continuation of KL(σ).

Step 4: Singularity at σ = 0, ω
We now wish to show that K ′(−iλ) is analytic in

√
λ for σ = −iλ, and

similarly that K(−iλ+ω) is analytic in λ. To do this, we proceed as in Step 3,
but push the contour down instead of up. We rotate the contour γ1 ∪ γ2 ∪ γ3,
with γ1 = [−i∞− R,−R], γ2 which goes around the unit circle of radius R in
the upper half plane (as in step 1), and γ3 which is [R,R − i∞]. This lets us
avoid concerning ourselves with the singularities of the integrand; the important
behavior is the decay near p = −i∞.

Note that the integral kernel of K ′(−iλ) is given by

k′−iλ(t, s) =

∫

γ1∪γ2∪γ3

e−iλp

1 − eωp−iωs

[

exp

(

(c(t) − c(t− s))2

4p

)

− 1

]

dp√
p

while that of K ′(−iλ+ ω) is given by:

k′−iλ+ω(t, s) =

∫

γ1∪γ2∪γ3

e−iλpeωp

1 − eωp−iωs

[

exp

(

(c(t) − c(t− s))2

4p

)

− 1

]

dp√
p

First, observe that the integral over γ2 is analytic in λ, provided R 6= ωs. Thus,
choosing a different R for ωs < (3/4)π and ωs > (1/4)π shows analyticity in λ.

We consider the case σ = −iλ, the case σ = −iλ+ω being treated similarly.
We now observe that, for ℜp = R (the same argument applies to ℜp = −R),
the integrand (over γ3 or γ1) becomes a Laplace transform:

∫

γ3

e−iλp

1 − eωp−iωs

[

exp

(

(c(t) − c(t− s))2

4p

)

− 1

]

dp√
p

= e−iλR

∫ −i∞

0

e−iλp

1 − eω(p+R)−iωs

[

exp

(

(c(t) − c(t− s))2

4(p+R)

)

− 1

]

dp√
p+R

(3.21)

We then observe that we can rewrite
[

exp

(

(c(t) − c(t− s))2

4(p+R)

)

− 1

]

1√
p+R

= (p+R)−3/2H(c(t), c(t− s), p+R)
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with H(c(t), c(t − s), p + R) analytic in p for p 6= R, and therefore analytic on
the contour in (3.21). This follows since ez − 1 = O(z) near z = 0. We now
substitute this back into (3.21) and change variables to iλp = z, to obtain:

(3.21) = −ie−iλR

∫ ∞

0

e−z 1

1 − eω(−iz/λ+R)−iωs

H(c(t), c(t− s),−iz/λ+R)

(−iz/λ+R)3/2

dz

λ

= −iλ1/2e−iλR

∫ ∞

0

e−z 1

1 − eω(−iz/λ+R)−iωs

H(c(t), c(t− s),−iz/λ+R)

(−iz +Rλ)3/2
dz

(3.22)

The integrand is analytic in λ, and absolutely convergent. The power of λ1/2

makes the net result a ramified analytic function. The same argument can
be applied to γ1, replacing R by −R. Thus, we have shown that k′−iλ(t, s) is

analytic in λ1/2. This implies that K(−iλ) is analytic in λ1/2. As remarked
before, the case K(−iλ+ ω) is identical, so the proof is complete. �

Now we have shown that K ′ = KL. In addition, now that KL(σ) and
KF (σ) are defined, it is clear that KF (σ) + KL(σ) = K(σ). Thus, K(σ) =
KF (σ) +KL(σ) can be analytically continued to the region ℑσ ≤ 0. Next we
show that K(σ) grows at most exponentially as ℑσ → ±∞.

Proposition 3.11 K(σ) vanishes as ℑσ → ∞.

Proof. We break K(σ) up as K(σ) = KF (σ) +KL(σ). The first term, KF (σ)
is bounded (away from σ = 0) simply by inspecting (3.16). The second vanishes
near ℑσ = ∞ by Proposition 3.10. �

We have now shown that K(σ) : L2(S1
ω, dt) → L2(S1

ω , dt) is an analytic (in
σ) family of compact operators. This allows us to construct the resolvent.

Proposition 3.12 The operator (1−K(σ))−1 is a meromorphic (in σ) family
of bounded operators. This implies that if (1−K(σ))−1 has a pole of order n at
a point σ = σ̌k, we then have the following asymptotic expansion as σ → σ̌k:

(1 −K(σ))−1 =

nk
∑

j=0

Yk,j(t)〈Yk,j(t)|·〉
(σ − σ̌k)j+1

+D(σ) (3.23)

where D(σ) is analytic near σ̌k. Yk,j(t) solves (1 − K(σ̌k))Yk,j(t) = Yk,j−1(t)
(with Yk,−1(t) = 0). The functions Yk,j(t) are all L2(S1

ω) functions.
If σ̌k = 0, then the same result holds, except that the poles are in the variable√

σ instead of (σ − σ̌k).
An additional result (which we use later) is that if (1−K(σ))−1 has no poles

in the variable σ1/2 near σ = 0, then P0y(0, t) = (1/2)
∫

R
ψ0(x)dx, where P0 is

projection onto the zero’th Fourier coefficient.

Remark 3.13 Note that we do not assume that dim Ker K(σ̌k) 6= 1. We
choose the convention that if the dimension of the kernel is greater than 1, we
consider this to mean that σ̌k = σ̌k′ for some k 6= k′. Thus, one can have
degenerate resonances as well as degenerate eigenvalues.
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Proof. This is merely the analytic Fredholm alternative theorem. There is
only one technical point regarding the behavior near σ = 0 due to the fact that
K(σ) is singular there.

This can be remedied as follows. Note that K(σ) = KF (σ) + KL(σ). For
small σ, we use the following resolvent identity:

(1 −K(σ)−1 = (1 −KF (σ) −KL(σ))−1

= [1 −KF (σ)]−1(1 −KL(σ)[1 −KF (σ)]−1)−1 (3.24)

The operator [1 −KF (σ)]−1 is analytic in σ1/2 (for small σ), being defined by

[1 −Kf(σ)]−1
∑

j

fje
−ijωt =

∑

j

(1 − σ−1/2)−1fje
−ijωt.

Since KL(σ) is compact, the Fredholm alternative applies to the resolvent of
(1 − KL(σ)[1 − KF (σ)]−1), implying that (1 − KL(σ)[1 − KF (σ)]−1)−1 and
therefore (1 −K(σ))−1 is meromorphic in σ1/2.

If this operator has no poles in the variable σ1/2 near σ = 0, then y(σ) is
analytic in σ1/2 for small σ. We then rewrite (3.8) as:

(1 −KF (σ)(1 − P0) −KL(σ))y(σ, t) + σ−1/2P0y(σ, t)

= σ−1/2(1/2)

∫

R

ψ0(x)dx + f(σ1/2, t)

Matching coefficients to to order σ−1/2 as σ → 0 shows that P0y(0, t) =
(1/2)

∫

R
ψ0(x)dx. �

Proposition 3.14 Define Kǫ(σ) as K(σ) with c(t) replaced by ǫc(t) (so in par-
ticular, K1(σ) = K(σ)). Then the position of the poles of Kǫ(σ) are ramified
analytic functions of ǫ, the field strength, except possibly near σ̌k = −i∞. For
small ǫ, there is only one pole σ̌0 near the real axis (corresponding to the dressed
bound state), and all other poles are located near σ = −i∞.

Proof. This is basically the analytic implicit function theorem, using the fact
that Kǫ(σ) is analytic in ǫ, and K0(σ) = KF (σ) (c.f. Proposition 3.8).

We first show that no poles form spontaneously. Consider a compact set,
bounded by the curve γ. Then define

Rγ,ǫ =

∫

γ

[1 −Kǫ(σ)]−1dσ

Provided [1−Kǫ(σ)]−1 is analytic on γ (in σ and ǫ jointly), then Rγ,ǫ is analytic
in ǫ. For ǫ = 0, we find that:

[1 −K0(σ)]−1
∑

n

fne
−inωt =

∑

n

[1 − (σ + nω)−1/2]−1fne
−inωt (3.25)
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which has one pole on [0, ω), and no others. Since ‖Kǫ(σ) −K0(σ)‖ ≤ Cǫ (with
C depending in γ and σ), [1 −Kǫ(σ)]−1 is analytic on and inside γ for small ǫ.
Thus Rγ,ǫ = 0 for small ǫ, and by analyticity is zero on any interval ǫ ∈ [0, δ) on
which it is analytic. Rγ,ǫ is analytic as ǫ varies from ǫ = 0, until [1 −Kǫ(σ)]−1

becomes singular on γ. We therefore find that Rγ,ǫ becomes nonzero only after
poles of Kǫ(σ) have crossed γ, i.e. no poles formed spontaneously inside γ.

The same argument shows that spontaneous poles of higher order do not form
if we use Rk

γ,ǫ =
∫

γ
fk(σ)[1−Kǫ(σ)]−1dσ (for fk(σ) a function with nonvanishing

k-th derivative) instead of Rγ,ǫ. This argument implies that any poles which
are not present for ǫ = 0 must come from σ = −i∞ as ǫ is “switched on”.

Analyticity of σ̌k follows immediately from Theorems 1.7 and 1.8 in [23,
page 368-370] (see also the discussion following Theorem 1.7). These results
show that any eigenvalue λ(ǫ, σ) of Kǫ(σ) is an analytic function. Poles occur
where λ(ǫ, σ) = 1. By the implicit function theorem, σ̌k = σ̌k(ǫ) is ramified
analytic. �

Remark 3.15 The only obstacle to proving the absence of poles moving in
from σ = −i∞ is a lack of bounds on the norm of [1−K(σ)]−1. If we had such
bounds, it would be possible to show that the only pole of [1 −K(σ)]−1 is the
the analytic continuation of the bound state for E(t) = 0. In other cases we
have considered [8, 9] such bounds were proved, and there is no fundamental
reason it should not be true in this case as well.

3.3 Time behavior of ψ(x, t)

We have now shown that K(σ) is a compact analytic operator. By the Fredholm
alternative, (1 −K(σ))−1 is a meromorphic operator family. By deforming the
contour in (3.6a), we can determine the behavior of Y (t). Once this is complete,
we can calculate Φk,j(x, t) and ΨM (x, t) and finish the proof of Theorem 2.

Proposition 3.16 The function Y (t) has the expansion:

Y (t) =

M−1
∑

k=0

nk
∑

j=0

αk,jt
je−iσ̌ktYk,j(t) +DM (t) (3.26)

with Yk,j(t) the residue of [1−K(σ)]−1 at σ̌k and αj,k = (2π/ω)〈y0(σ̌k, t)|Yk,j(t)〉/j!.
M must not be greater than the number of poles of [1 −K(σ)]−1. If no σ̌k = 0,
then DM (t) has the asymptotic expansion:

DM (t) ∼
∑

n∈Z

e−inωt
∞
∑

j=3

Dj,nt
−j/2 (3.27)

In particular this shows that |DM (t)| = O(t−3/2). If σ̌k = 0 for some k, Y (t) =
DM (t) except that in (3.27) the sum starts at j = 1 rather than j = 3.
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Proof. Because (1 −K(σ))−1 is meromorphic in σ, y(σ, t) can be written as

y(σ, t) = (1 −K(σ))−1y0(σ, t) =

nk
∑

j=0

Yk,j(t)〈Yk,j(t)|y0(σ, t)〉
(σ − σb)j

+D(σ)y0(σ, t)

(3.28)
We compute Y (t) using (3.6a), and shifting the contour:

Y (t) = ω−1

∫ ω−

0+

e−iσty(σ, t)dσ

= ω−1

∫ −iK(M)+0+

0+

e−iσty(σ, t)dσ + ω−1

∫ −iK(M)+ω

−iK(M)

e−iσty(σ, t)dσ

+ ω−1

∫ ω−

−iK(M)+ω−

e−iσty(σ, t)dσ + Residues = ω−1

∫ −iK(M)+ω

−iK(M)

e−iσty(σ, t)dσ

+ ω−1

∫ −iK(M)+0

0

e−iσty(σ + 0+, t) − e−(iσ+ω−)ty(σ + ω−, t)dσ

+ Residues (3.29)

If [1 −K(σ)]−1 has more than M poles, then we make K(M) sufficiently large
to collect M of them; otherwise, we simply collect all the poles. The residue
term is given by:

M−1
∑

k=0

nk
∑

j=0

αk,jt
je−iσ̌ktYk,j(t)

stemming from the M poles with ℑσ̌k > −K(M). By (3.6c), we can change the
integral in the second to last line of (3.29) to:

ω−1

∫ −iK(M)

0

e−iσt(y(σ + 0+, t) − y(σ + 0−, t))dσ (3.30)

Note that y(σ, t) is analytic in σ1/2, and thus y(σ + 0+, t) − y(σ + 0−, t) can
be expanded in a Puiseux series in σ1/2 (and a Fourier series in t). Watson’s
Lemma yields:

(3.30) = ω−1

∫ −iK(M)

0

e−iσt
∑

n∈Z

e−inωt
∞
∑

j=0

Dj,nσ
j/2dσ

∼ ω−1
∑

n∈Z

einωt
∞
∑

j=3

Dj,nΓ(j/2)t−j/2 (3.31)

This is what we wanted to show.
When σ̌k = 0, the result follows simply by noting that the sum over j in

(3.30) starts from j = −1 rather than j = 0, thereby letting the sum on the
right of (3.30) start at j = 1 instead of j = 3.
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The integral from −iK(M) to −iK(M) + ω decays at least as fast as
O(e−K(M)t), and is included in Dk(t). �

We now reconstruct the wavefunction in the magnetic gauge. The basic idea
is as follows. We know that ψB(0, t) = DM (t)+

∑M
k=0

∑nk

j=0 αk,jt
je−iσ̌ktYk,j(t).

Using the fact that δ(x)ψB(x, t) = δ(x)ψB(0, t), we find that ψB(x, t) satisfies
the following equation:

i∂tψB(x, t) =
(

−∂2
x + 2ib(t)∂x

)

ψB(x, t) − 2δ(x− c(t))ψB(x, t)

=
(

−∂2
x + 2ib(t)∂x

)

ψB(x, t) − 2δ(x− c(t))ψB(0, t)

=
(

−∂2
x + 2ib(t)∂x

)

ψB(x, t) − 2δ(x− c(t))Y (t) (3.32)

We will use, for ℑσ < 0 a solution operator for the Floquet problem G(σ)
(described shortly) to extend (3.26) to all x, thereby recovering (1.6). The
Gamow vectors will come from applying G(σ) to Yk,j(t), while the dispersive
part will come from applying this operator to DM (t).

Proposition 3.17 Let G(σ) be the solution operator for the equation:

(σ + i∂t + ∂2
x − b(t)∂x)u(x, t) = −2δ(x)f(t) (3.33)

so that for ℑσ > 0, u(x, t) decays as x→ ±∞. By “solution operator”, we mean
that G(σ) maps f(t) 7→ u(x, t). Then G(σ) can be analytically continued to the
region ℑσ ≤ 0. The function u(x, t) = G(σ)[−2δ(x)f(t)] has the expansion:

u(x, t) =

{ ∑

m um,Re
λm,−x2−1/2λ−1

m,−e
−imωte∓λm,−c(t), x ≥ 0

∑

m um,Re
λm,+x2−1/2λ−1

m,+e
−imωte∓λm,+c(t), x ≤ 0

(3.34a)

λm,± = ∓i
√
σ +mω (3.34b)

where f(t) 7→ {um,R, um,L} is a mapping from L2(S1
ω) → l2(Z × {L,R}). G(σ)

is also a continuous map, analytic in σ1/2 from L2(S1
ω) → L2(BR × S1

ω) with
BR = {x : |x| < R} for any (fixed) R. Near σ = 0, we have G(σ)δ(x)f(t) =
σ−1/2(1/2)P0f(t) + O(1), with P0f(t) the projection onto the zero’th Fourier
coefficient of f(t) and the O(1) term being analytic in σ1/2.

This result is proved in Appendix B. We are now ready to compute the
resonance decomposition, (1.6).

Proposition 3.18 The expansion (1.6) holds.

Proof. We work in the magnetic gauge, to simplify this part of the problem.
Note that ψB(x, t) = ψv(x + c(t), t), so in particular, ψB(0, t) = ψv(c(t), t) =
Y (t). Moreover, recall that the Zak transform commutes with periodic opera-
tors, such as the coordinate transform (x, t) 7→ (x+ c(t), t).

Additionally, in what follows, the notation A(σ1/2) denotes a function ana-
lytic in σ1/2 taking values in L2(S1

ω , dt). Note that A(σ1/2) may vary from line
to line and from equation to equation.
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Define ψI(x, t) = ei∂2
xteic(t)∂xψ0(x) to be the solution of the Schrödinger

equation in the magnetic gauge with no binding potential, and initial condition
ψ0(x). Define ψS(x, t) to be the scattered part of ψ(x, t), i.e. the solution of
(3.32) with ψS(x, 0) = 0. This implies that ψB(x, t) = ψI(x, t) + ψS(x, t).

By Zak transforming (3.32), we obtain the following equation for ΨS(σ, x, t) =
Z[ψS ](σ, x, t):

(σ + i∂t)ΨS(σ, x, t) = [−∆ + 2ib(t)∂x] y(σ, t)ΨS(σ, x, t) − 2δ(x)y(σ, t)

Equivalently:

ΨS(σ, x, t) = − [+σ + i∂t + ∆ − b(t)∂x]
−1

2δ(x)y(σ, t) (3.35)

This has the solution ΨS(σ, x, t) = −G(σ)2δ(x)y(σ, t).
Note that by Proposition 3.6, for each x, ΨI(σ, x, t) = Z[ψI ](σ, x, t) takes

the form (1/2)σ−1/2
∫

ψ0(x)dx + f(σ1/2, x, t) with f(σ1/2, x, t).
We can now reconstruct ψB(x, t) by inverting the Zak transform of Ψ(σ, x, t) =

ΨI(σ, x, t) + ΨS(σ, x, t):

ψB(x, t) = ω−1

∫ ω

0

e−iσtΨ(σ, x, t)dσ

=

∫ −iK(M)

0

e−iσtΨ(σ, x, t)dσ+

∫ −iK(M)+ω

−iK(M)

e−iσtΨ(σ, x, t)dσ+

∫ ω

−iK(M)+ω

e−iσtΨ(σ, x, t)dσ

+ Residues (3.36)

Note that both ΨI(σ, x, t) and ΨS(σ, x, t) are bounded on for fixed x, and
for ℑσ = −iK(M). Thus, the integral over the contour [−iK(M),−iK(m)+ω]
decays like O(e−K(M)t). Thus, (3.36) becomes:

ψ(x, t)

=

∫ −iK(M)

0

e−iσtΨ(σ, x, t)dσ−
∫ −iK(M)+ω

ω

e−iσtΨ(σ, x, t)dσ+Residues+O(e−K(M)t)

(3.37)

We show that the contour integral in (3.37) gives rise to the dispersive part,
while residues give rise to the resonance.

The Residue Term, σ̌k 6= 0
By substituting (3.23) into (3.36), we find that when σ̌k 6= 0, the residue

term (for each pole) takes the form:

−e−iσ̌kttj
2

ωj!
G(σ̌k)δ(x)Yk,j(t)〈Yk,j(t)|y0(σ̌,t)〉 = αj,ke

−iσ̌kttjΦk,j(x, t) (3.38)

with αk,j = 〈Yk,j(t)|y0(σ̌,t)〉 and Φk,j(x, t) = G(σ̌k)δ(x)Yk,j(t). This follows
because y(σ, t) has a pole at σ = σ̌k with residue Yk,j(t), and analyticity of
G(σ) (recall Proposition 3.17, in particular (3.34a)) shows that Ψ(σ, x, t) has a
pole at σ = σ̌k with residue Φk,j(x, t). Thus we have proved (1.4c).
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The Dispersive Part
To compute the integral term of (3.37), note that we must compute:

ΨM (x, t) =

∫ −iK(M)

0

e−iσtΨ(σ, x, t)dσ −
∫ −iK(M)+ω

ω

e−iσtΨ(σ, x, t)dσ =

∫ −iK(M)

0

e−iσtΨI(σ, x, t)dσ − e−i(σ+ω)tΨI(σ + ω, x, t)dσ

− 2

∫ −iK(M)

0

e−iσtG(σ)δ(x)y(σ, t) − e−i(σ+ω)tG(σ + ω)δ(x)y(σ + ω, t)dσ

+O(e−K(M)t) (3.39)

Since Z[f ](σ + ω, t) = eiωtZ[f ](σ, t), we find that:

e−iσt
(

ΨI(σ, x, t) − e−iωtψI(σ + ω, x, t)
)

= e−iσt(ΨI(σ, x, t)−ΨI(σ−0, x, t))
(3.40)

Using the fact that ΨI(σ, x, t) = σ−1/2(1/2)
∫

ψ0(x)dx+A(σ1/2) (by Proposition
3.6) we find that:

(3.40) = e−iσt(σ + 0)−1/2(1/2)

∫

ψ0(x)dx +A(σ1/2)

− e−iσt(σ − 0)−1/2(1/2)

∫

ψ0(x)dx +A(σ1/2)

= e−iσtσ−1/2

∫

ψ0(x)dx + e−iσA(σ1/2)

Plugging this into (3.39) yields:

(3.39) = t−1/2

∫

ψ0(x)dx +

∫ −iK(M)

0

e−iσtA(σ1/2)dσ

− 2

∫ −iK(M)

0

e−iσtG(σ)δ(x)y(σ, t) − e−i(σ+ω)tG(σ + ω)δ(x)y(σ + ω, t)dσ

+O(e−K(M)t) (3.41)

Again using the identity Z[y](σ + ω, t) = eiωtZ[y](σ, t), we find:

(3.41) = t−1/2

∫

ψ0(x)dx +

∫ −iK(M)

0

e−iσtA(σ1/2)dσ

− 2

∫ −iK(M)

0

e−iσt [G(σ + 0)δ(x)y(σ + 0, t) −G(σ − 0)δ(x)y(σ − 0, t)]dσ

+O(e−K(M)t) (3.42)
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Since G(σ)δ(x) = σ−1/2(1/2)P0 + (C +A(σ1/2)) near σ = 0, the second to last
line of (3.42) becomes:

∫ −iK(M)

0

e−iσt
[

(σ + 0)−1/2(1/2)P0y(σ + 0, t) + (C +A(σ1/2))y(σ + 0, t)

− (σ − 0)−1/2(1/2)P0y(σ, t) + (C +A(σ1/2))δ(x)y(σ − 0, t)
]

dσ

=

∫ −iK(M)

0

e−iσtσ−1/2P0y(0, t) + e−iσtA(σ1/2)dσ (3.43)

If (1 −K(σ))−1 has no poles near σ = 0, then P0y(0, t) = (1/2)
∫

ψ0(x)dx (see
Proposition 3.12), and plugging (3.43) into (3.41) yields:

ΨM (x, t) = t−1/2

∫

ψ0(x)dx +

∫ −iK(M)

0

e−iσtA(σ1/2)dσ

−
∫ −iK(M)

0

e−iσtσ−1/2

[
∫

ψ0(x)dx

]

dσ +

∫ −iK(M)

0

e−iσtA(σ1/2)dσ

=

∫ −iK(M)

0

e−iσtA(σ1/2)dσ +O(e−K(M)t) (3.44)

The integral in the last line of (3.44) is a Laplace-type integral, and A(σ1/2) is
analytic in σ1/2. Watson’s lemma therefore yields (1.7), and analyticity in σ1/2

shows that the sum in (1.7) starts at n = 3. If (1 − K(σ))−1 has poles near
σ = 0 (i.e. σ̌k = 0 for some k), then the sum will begin from n = 1 (see below).

The Residue Term, σ̌k = 0
In the event that (1 − K(σ))−1 has poles in σ1/2 near σ = 0, the only

difference in the above analysis is that the σ−1/2 terms coming from y0(σ, t)
will not cancel the σ−1/2 terms coming from G(σ)δ(x)y(σ, t). Thus, (3.44)
instead becomes:

ΨM (x, t) =

∫ −iK(M)

0

e−iσt





M ′

∑

n=1

dj(x, t)

σ−n/2
+A(σ1/2)



 dσ +O(e−iK(M)t)

The order of the pole, M ′, can not be larger than 2 since this would imply
that ΨM (x, t) grows at the rate tM

′/2−1, which would contradict conservation
of probability. If the order of the pole is 2, this corresponds to a Floquet bound
state at zero energy, and if the order is 1, this corresponds to a zero energy
resonance, and (1.6) holds with the sum starting from n = 1 in (1.7). �

We have thus far proved all of Theorem 2 except for the fact that Φk,0(x, t)
decays at x = ±∞ if ℑσ̌k = 0.

Proposition 3.19 Suppose that ℑσ̌k = 0. Then Φk,0(x, t) decays at x = ±∞
and ψL,R

n = 0 for all n < 0. Furthermore, the pole is of order 1.
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Proof. It is clear that unitary evolution implies:

ω

2π

∫ 2π/ω

0

∫ R

−R

|ψ(x, t)|2 dxdt ≤ 1 (3.45)

If the pole is of order greater than 1, then:

ψ(x, t) =

nk
∑

j=0

tjαk,je
−iσ̌ktΦk,j(x, t) +

∑

k′ 6=k

tjαk′,je
−iσ̌k′ tΦk′,j(x, t) + ΨM (x, t)

But the second two terms decay, while the first grows with time. This contradicts
unitary evolution, unless nk = 0. Thus the pole must be of first order.

Now suppose that in the expansion of Φk,0(x, t), at least one ψL,R
n 6= 0 with

n < 0. Then Φk,0(x, t) will oscillate with x rather than decay. This implies
that:

ω

2π

∫ 2π/ω

0

∫ R

−R

|Φk,j(x, t)|2 dxdt ≥ CR

for sufficiently large R and some C > 0. On the other hand, the rest of ψ(x, t)
(the dispersive part, and the exponentially decaying poles) which we denote
R(x, t) decays with time. This implies that for t ≥ tR (with TR chosen large
enough so that |R(x, t)| ≤ ǫ/

√
2R that:

‖ψ(x, t)‖ = ‖Φk,0(x, t) +R(x, t)‖ ≥ ‖Φk,0(x, t)‖ − ‖R(x, t)‖ ≥
√
CR − ǫ

Selecting R > (2 + ǫ)/C causes ‖ψ(x, t)‖ ≥ 1, contradicting unitary evolution.
Intuitively, what this means is the following. The modes ψL,R

n with n < 0
correspond to radiation modes. If such a mode is nonzero, then Φk,0(x, t) will
be emitting “radiation” without decaying, which is clearly impossible. �

4 Concluding Remarks

In this paper we studied the interaction of a simple model atom with a dipole
radiation field of arbitrary strength. We obtained a resonance expansion, in
which resonances can be resolved regardless of their complex quasi-energy. In
particular, we obtained a rigorous definition of the ionization rate γ = −2ℑσ̌k

and Stark-shifted energy, ℜσ̌k for the k-th resonance. We further showed that
complete ionization occurs (γ > 0) when E(t) is a trigonometric polynomial.

Some possible future directions of research include:

4.1 Perturbative and numerical calculations

The main feature of our method is that it turns a time dependent problem
on R into a compact analytic Fredholm integral equation. This implies that a
family of finite dimensional approximations can be used (in the Zak domain) to
approximate solutions to the time dependent Schrödinger equation.
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We believe that the quasi-energy methodology used here and in related pa-
pers [6, 9, 8] can be used for quantitative calculations of realistic physical sys-
tems. Perturbative calculations along these lines have recovered Fermi’s Golden
Rule and the multiphoton effect.

4.2 Extension to 3 dimensions

In the case of H0 = −∆− 2δ(~x) with ~x ∈ R3, a similar equation to (3.4) can be
derived. Due to the fact that δ(~x) is not in H−1(R3), ψ(~x, t) becomes singular
at t = 0+. This can be remedied by considering weak solutions7 [30], and an
equation similar in most respects to (3.4) can be derived which governs the
evolution [14]. For this reason, we believe most results can be adapted to this
case, as has been done for H0 = −∆ − 2δ(x) + E(t)δ(x) [9, 6, 26].

A Proof of Proposition 2.2

We observe that by the results of Section 3, if a bound state exists, then:

ψB(0, t) = ea(t)/4e−ia(t)Yk(t)

Setting z = e−iωt, and y(z) = Yk(t), we wish to show that y(z) = f(z) + g(z)
with f, g both entire of exponential order 2n. This is equivalent to showing that:

|Yk(t+ iα)| ≤ C exp[C′ exp(|2Nωα|)]

The function Yk(t) satisfies the equation:

Yk(t) =

∫ 2π/ω

0

k′(t, s)Yk(t− s)ds = −
∫ 2π/ω

0

k′(t, t− s)Yk(s)ds

with k′(t, s) as defined in (3.19b). Thus we obtain the bound:

|Yk(t+ iα)| ≤
∫ 2π/ω

0

|k′(t+ iα, t+ iα− s)| |Yk(s)| ds (A.1)

and it suffices to bound |k′(t+ iα, t+ iα− s)|. From the definition of k′(t, s),
we find:

k′(t+ iα, t+ iα− s)

=
ω

2πi

∫

R+0i

eσp

1 − eωp+α−iω(t−s)

[

exp

(

(c(t+ iα) − c(s))2

4p

)

− 1

]

dp√
p

Supposing α/ω > 1 (we are interested in the behavior as α→ ∞), the integrand
is analytic for z = reiθ, 0 < r < 1 and 0 ≤ θ ≤ π. Thus, we can deform the
contour from R + 0i to γ = ∂{z : ℑz < 0 or |z| < 1}.

7One considers the operator H0 restricted to the domain D = {f(~x) : f(x) ∈
H1(R3) and f(0) = 0}. From this domain, one can construct a self-adjoint extension of
H0, thus allowing the evolution to be defined.
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Note that for some constant C, |c(t+ iα)| ≤ CeNω|α|, since c(t) is a trigono-
metric polynomial of order N .

We find that there are three regions of integration which contribute to k′(t+
iα, t + iα − s). The regions of integration contributing come from the region
near 1 − eωp+α−iω(t−s) = 0 (the pole of the integrand), large p and small p.

If the pole is closer to R than π/ω, we deform γ up to encircle it at a distance
piω. Otherwise, we ignore it. Therefore, in any case, for z ∈ γ, 1−eωp+α−iω(t−s)

is uniformly bounded away from zero.
We then split γ = γ< ∪ γ> ∪ γα where γ< = {p ∈ γ : |p| < (CeNω|α| +

‖c(s)‖L∞)2} and γ> = γ \ γ<. We therefore find that:

|k′(t+ iα, t+ iα− s)| ≤ |residue|

C

∫

γ<

∣

∣

∣

∣

eσp

1 − eωp+α−iω(t−s)

[

exp

(

(c(t+ iα) − c(s))2

4p

)

− 1

]∣

∣

∣

∣

dp
√

|p|

+ C

∫

γ>

∣

∣

∣

∣

eσp

1 − eωp+α−iω(t−s)

[

exp

(

(c(t+ iα) − c(s))2

4p

)

− 1

]∣

∣

∣

∣

dp
√

|p|
≤ C

The residue can be bounded by:

|residue|

≤ C

∣

∣

∣

∣

∣

eσ(−α+iω(t−s))/ω

[

exp

(

(c(t+ iα) − c(s))2

4(−α+ iω(t− s))/ω

)

− 1

]

1
√

(−α+ iω(t− s))/ω

∣

∣

∣

∣

∣

≤ C exp(C |c(t+ iα)|2) ≤ C exp(C exp(2Nω |α|))

We bound the integral over the compact region γ< simply by taking absolute
values:

∫

γ<

∣

∣

∣

∣

eσp

1 − eωp+α−iω(t−s)

[

exp

(

(c(t+ iα) − c(s))2

4p

)

− 1

]∣

∣

∣

∣

dp
√

|p|
≤ |γ<|C exp(C exp(2Nω |α|))

For the integral over γ>, we use the fact that if |z| < 1, |ez − 1| ≤ e |z|:
∫

γ>

∣

∣

∣

∣

eσp

1 − eωp+α−iω(t−s)

[

exp

(

(c(t+ iα) − c(s))2

4p

)

− 1

]
∣

∣

∣

∣

dp
√

|p|
∫

γ>

∣

∣

∣

∣

eσp

1 − eωp+α−iω(t−s)

(CeNω|α| + ‖c(s)‖L∞)2

|p|

∣

∣

∣

∣

dp
√

|p|

≤ Ce2Nω|α|
∫

γ>

∣

∣

∣

∣

eσp

1 − eωp+α−iω(t−s)
p−3/2

∣

∣

∣

∣

dp ≤ C exp(C exp(2Nω |α|))

Combining these estimates, we find that k′(t+ iα, t + iα− s) has the required
growth as α→ ∞, hence Yk(t) does. The same argument applies as α→ −∞.
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B Proof of Proposition 3.17

We state a few results we need.

Theorem 4 (T. Kato, [23, page 368]) If a family T (σ) of closed operators
on X depending on σ holomorphically has a spectrum consisting of two separated
parts, the subspaces of X corresponding to the separated parts also depend on σ
holomorphically.

Remark B.1 A few words of explanation are in order. In [23], they are given
in the commentary following the theorem.

The analytic dependence of the separated parts of the spectrum means
the following. Let Mσ, M ′

σ be the spectral subspaces of T (σ), related to the
two separated parts. Then there exists an analytic function U(σ) (called the
transformation function), with analytic inverse, so that Mσ = U(σ)M0 and
M ′

σ = U(σ)M ′
0. For fixed σ, both U(σ) and U−1(σ) are bounded operators on

the Hilbert space.
In addition, the spectral projections PM (σ) and PM ′(σ) can be written as:

PM (σ) = U(σ)PM (0)U−1(σ) (B.1a)

PM (σ) = U(σ)PM ′ (0)U−1(σ) (B.1b)

We now prove a Lemma which allows us to reconstruct Ψ(σ, x, t) given solely
information about Ψ(σ, 0, t). The basic idea is to treat the Schrödinger equation
as an evolution equation in x, with a “Hamiltonian” that is periodic in t.

Lemma B.2 Define the Hilbert space H = H1/2(S1
ω, dt) ⊕ L2(S1

ω, dt). Then
there exists a sequence Nm with 0 < infm |Nm| ≤ supm |Nm| so that

φm,±
def

= Nm

(

2−1/2λ−1
m,±e

−imωte∓λm,±c(t)

2−1/2e−imωte∓λm,±c(t)

)

(B.2a)

is a Riesz basis for H. Here, λm,± is defined as:

λm,±
def

= ∓i
√
σ +mω (B.2b)

Furthermore, the operator

H
def

=

[(

0 1
σ + i∂t 0

)

+

(

0 0
0 b(t)

)]

is diagonal in this basis, with Hφm,± = λm,±φm,±.
Moreover, if we define H+ as the span of {φm,+}m∈Z and H− as the span

of {φm,−}m∈Z then exH is defined, bounded and analytic in σ for ℜσ ∈ [0, ω)
(except at σ = 0) on H+ for x ≤ 0, and on H− for x ≥ 0.

We are nearly ready to prove Lemma B.2. First a minor technical point.
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Remark B.3 Consider the sequence
√
σ + nω, with ℜσ ∈ (0, ω). For n nega-

tive, ℑ
√
σ + nω grows like

√

|n|. For n positive, ℑ
√
σ + nω = O(n−1/2), and is

uniformly bounded below.

Proof of Lemma B.2. It is a simple calculation to show φm,± are eigenvectors
of H with eigenvalues λm,±. To show that {φ±m} is a Riesz basis for H, we show
that H is a bounded perturbation of a normal operator. Consider the family of
operators (analytic in ζ) on H:

Hζ

(

u
ux

)

=

(

0 1
σ + i∂t 0

)(

u
ux

)

+

(

0 0
0 ζb(t)

)(

u
ux

)

Consider also the family of vectors (parameterized by ζ):

{φ±m,ζ} =

{

Nm,ζ

(

2−1/2λ−1
m,±e

−imωteζλm,±c(t)

2−1/2e−imωte∓ζλm,±c(t)

)}

m∈Z

Nm,ζ is a normalizing constant which is defined implicitly; we discuss it
below. For ζ = 0, Nm,ζ = 1.

A simple calculation shows that (φ±m,ζ , λm,±) are eigenvector/eigenvalue
pairs of Hζ . In particular, each λm,± is separate from all the others. For
ζ = 0, they are also orthonormal in H. Let P±

m(ζ) be the associated spectral
projection operators, given by

P±
m(ζ) =

∫

γm

(Hζ − z)−1dz

where γm is a closed curve containing only λ±m,ζ , and no other eigenvalue of Hζ .
Let U(ζ) be the transformation function of Theorem 4 (see also Remark

B.1 and Eq. (B.1)). Since each λm,± is separated from all the others and varies
analytically (except near σ = 0), Theorem 4 (using λm,± as one of the separated
parts of the spectrum and {λm′,±}m′ 6=m as the other) implies that:

P±
m(ζ) = U(ζ)P±

m (0)U−1(ζ) = 〈U(ζ)−1 · |φ±m,0〉U(ζ)φ±m,0

= 〈 · |[U(ζ)−1]∗φ±m,0〉U(ζ)φ±m,0

We know that U(ζ)φ±m,0 is a vector in the direction

(

2−1/2λ−1
m,±e

−imωte∓ζλm,±c(t)

2−1/2e−imωte∓ζλm,±c(t)

)

but this determines U(ζ)φ±m,0 only up to a constant (not necessarily real), de-

noted by Nm,ζ. Since U(ζ) is bounded above and below, 0 <
∥

∥U(ζ)−1
∥

∥

−1 ≤
|Nm,ζ| ≤ ‖U(ζ)‖. To compute the expansion of a function ψ(t) in this ba-
sis, we use the formula ψ±

m = 〈U(1)−1ψ|φ±m,0〉. Since φ±m,0 is an orthonormal

basis, this set of coefficients is clearly in l2, with l2 norm bounded below by
‖U(1)‖−1 ‖ψ(0, t)‖H and above by ‖U(1)‖ ‖ψ(0, t)‖H.
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Finally, we need to show that
∑

m P+
m(ζ) + P−

m(ζ) = 1, interpreting the
sum in the strong topology. The sum is strongly convergent when ζ = 0, since
the P±

m(0) are orthogonal projections. Multiplying on the left and right by the
continuous operators U(ζ) and U(ζ)−1 yields:

1 = U(ζ)U(ζ)−1 = U(ζ)

(

∑

m

P+
m(0) + P−

m(0)

)

U(ζ)−1

=
∑

m

U(ζ)[P+
m(0) + P−

m(0)]U(ζ)−1 =
∑

m

P+
m(ζ) + P−

m(ζ)

This proves the Riesz basis property. To show boundedness of exH , simply
note that the real part of the eigenvalues of H is bounded above on H+ and
bounded below on H− for σ in compact regions not containing σ = 0. Thus,
exH is bounded on H+. Analyticity follows by observing that the eigenvalues
and eigenfunctions are analytic in σ1/2, except near σ = 0. �

We are now prepared to prove Proposition 3.17.
Proof of Proposition 3.17. Note that (3.33) can be rewritten as:

∂x

(

u
ux

)

= H

(

u
ux

)

Away from x = 0, the solution u(x, t) can be written (formally) as:

(

u(x, t)
∂xu(x, t)

)

= exH

(

u(0±, t)
∂xu(0

±, t)

)

,±x < 0 (B.3)

At x = 0, the two matching conditions need be satisfied:

u(0+, t) − u(0−, t) = 0 (Continuity)

∂xu(0
+, t) − ∂xu(0

−, t) = −2f(t) (Differentiability)

For ℑσ > 0, λm,+ always has positive real part and λm,− always has negative
real part (recall (B.2b)). Thus, if u(x, t) is to vanish as x→ ±∞, we find that:

(

u(0−, t)
∂xu(0

−, t)

)

=
∑

m

um,Rφm,−(t)

(

u(0+, t)
∂xu(0

+, t)

)

=
∑

m

um,Lφm,+(t)

Since φm,± is a Riesz basis and [0, f(t)] ∈ H, we can write:

(

0
f(t)

)

=
∑

m

fm,+φm,+ + fm,−φm,− (B.4)

Choosing um,R = fm,− and um,L = −fm,+ solves (3.33), at least on a formal
level. Since u(0+, t) ∈ H+ and u(0−, t) ∈ H−, (B.3) makes sense. Since exH is
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bounded and analytic provided |x| < R, this is thus an analytic mapping from
L2(S1

ω) → L2(BR × S1
ω).

Now observe that both (B.3) and (B.4) can be analytically continued in
σ, and the continuation also solves (3.33), therefore G(σ) can be analytically
continued in σ as well.

We now need only determine the behavior near σ = 0. By Taylor-expanding
(B.2a) in σ1/2, we find that:

φ0,± = N02
−1/2

(

∓σ−1/2

1

)

+

(

O(1)
O(σ1/2)

)

(B.5)

while

φm,± = Nm2−1/2

(

λ−1
m,±e

−imωt

e−imωt

)

+

(

O(1)
O(σ1/2)

)

Thus, near σ = 0, we find to leading order (plugging (B.5) into (B.4)) that:

fm,+ − fm,− = 0

N02
−1/2(fm,+ + fm,−) = P0f(t)

with P0f(t) projection onto the zero’th Fourier coefficient. This implies that
f0,± = u0,R = −u0,L = 21/2N−1

0 (1/2)P0f(t)+O(σ1/2). On all other coefficients,
the behavior is analytic in σ since λm,± is analytic in σ for m 6= 0. Thus for
small σ:

u(x, t) = (1/2)(P0f(t))

(

σ−1/2

1

)

+O(1)

and therefore G(σ)δ(x)f(t) = (1/2)σ−1/2[P0f(t)] +O(1) near σ = 0. �

C Wellposedness

Well posedness of (1.10) (and by extension (1.9) and (1.1)) is sketched in an
example at the end of [33], though we sketch a proof for completeness. Let
H0 be a self adjoint operator and let V (t) be a time-dependent quadratic form.
Suppose the following conditions hold:

D(H0) ⊆ D(V (t)) (C.1a)

There exist constants a ∈ (0, 1), b ∈ (0,∞) such that:

|V (t)(f, f)| ≤ a〈H1/2
0 f |H1/2

0 f〉 + b〈f |f〉 (C.1b)

The function (H0+1)−1/2V (t)(H0+1)−1/2 is norm differentiable with derivative
(H0 + 1)−1/2V ′(t)(H0 + 1)−1/2 and

|V ′(t)(f, f)| ≤ a〈H1/2
0 f |H1/2

0 f〉 + b〈f |f〉 (C.1c)
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IfH0, V (t) satisfy these conditions, then by [33, Theorem 11], there is a constant
C so that H0 + V (t) +C is a K-generator (defined in [33]). It is then shown in
[33, Theorem 8] that a K-generator generates a unitary propagator U(t, s), i.e.

∂t〈f |U(t, s)ψ0〉 = 〈(H0 + V (t) + C)1/2f |(H0 + V (t) + C)1/2U(t, s)ψ0〉. (C.2)

We letH0 = −∂2
x and V (t) = ib(t)∂x−2δ(x). (C.1a) clearly holds; D(ib(t)∂x) =

H1/2 ⊇ H1, while Sobolev embedding shows that D(−2δ(x)) ⊇ H1. (C.1c) fol-
lows simply by noting that V ′(t) = E(t)∂x, which is again −∂2

x-bounded for
sufficiently large b.

(C.1b) can be verified with a = 1/2. Clearly, ib(t)∂x is −∂2
x-bounded with

a = 1/4 (or any other a). Note that f(0) =
∫

f̂(k)dk. Thus:

〈f |2δ(x)f〉 = 2 |f(0)|2 = 2

∣

∣

∣

∣

∫

f̂(k)dk

∣

∣

∣

∣

2

= 2

∣

∣

∣

∣

∫

(b + k2/4)1/2

(b + k2/4)1/2
f̂(k)dk

∣

∣

∣

∣

2

≤ 2
∥

∥

∥
(b+ k2/4)1/2f̂(k)

∥

∥

∥

2

L2

∥

∥

∥
(b+ k2/4)−1/2

∥

∥

∥

2

L2

= 2
∥

∥

∥
(b + k2/4)−1/2

∥

∥

∥

2

L2

[

(1/4)〈H1/2
0 f |H1/2

0 f〉 + b〈f |f〉
]

We can make
∥

∥(b+ k2/4)−1/2
∥

∥

2

L2 ≤ 1/2 by choosing b large; thus −2δ(x) is −∂2
x

bounded with a = 1/4. Adding the results together verifies (C.1b).
Thus, (1.10) is well posed. Applying the unitary transformations described

in Section 1.2 shows that (1.1) and (1.9) are well posed as well.
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