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Stable Outgoing Wave Filters for Anisotropic Waves
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Linear Waves

• Linear wave equation:

!ut(x, t) = H!u(, t)
H(i∇) = −H†(i∇)
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Linear Waves

• Linear wave equation:

• Schrodinger equation:

!ut(x, t) = H!u(, t)
H(i∇) = −H†(i∇)

H = i∆
u(x, t) = ψ(x, t)
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Linear Waves

• Linear wave equation:

• Maxwell’s equation

!ut(x, t) = H!u(, t)
H(i∇) = −H†(i∇)

H =
[

0 −µ−1/2∇× ε−1/2

ε−1/2∇× µ−1/2 0

]

"u(x, t) = (
√

µ "H,
√

ε "E)
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Linear Waves

• Linear wave equation:

• Linearized Euler equation:

!ut(x, t) = H!u(, t)
H(i∇) = −H†(i∇)

H =




M∂x1 −∂x1 −∂x2

−∂x1 M∂x1 0
−∂x2 0 M∂x1





(x, y) = (p(x, t), vx(x, t), vy(x, t))
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Linear Waves

• Linear wave equation:

• Relativistic Schrodinger Equation

!ut(x, t) = H!u(, t)
H(i∇) = −H†(i∇)

H =
√
−∆ + m2 −m

u(x, t) = ψ(x, t)
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Linear Waves

• Linear wave equation:

• Linear part of Benjamin-Ono equation:

!ut(x, t) = H!u(, t)
H(i∇) = −H†(i∇)

H = |∂x|∂x

u(x, t) = h(x, t)
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Numerical Solution

• Finite Differences

• Finite Elements

• Spectral methods

I’ll stay agnostic

FFT spectral methods rock.
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Mention Fundamental Complexity



Numerical Solution

•  Sample spacing: 

• Fundamental complexity of timestepping on 

• Solution on       requires careful choice of boundary conditions.

Memory = O((Lkmax)N )
Complexity = O((Tmax/δt)(Lkmax)N )

[−L, L]N

RN

δx ≤ O(2π/kmax)
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Outgoing Waves are a Problem
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The Problem

1D Schrodinger Equation
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The Problem

Anisotropic Maxwell

Incorrect Boundaries
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Quality is a MAC issue, not an accuracy one.

Looks better on Linux.



Possible Solution: Exact NRBC

• Dirichlet-to-Neumann boundaries: impose exact non-reflecting boundary 
conditions, constructed from Green’s function to free wave.

• Nonlocal in time, nonlocal on boundary

• Internal solver restricted (no Fourier spectral methods)

• Geometry restricted

• Majda-Engquist, Bayliss-Turkell, Hagstrom, Greengard, Grote, ...
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Possible Solution: Perfectly Matched Layers

• Extend with absorbing layer

• Dissipation inside layer

• Must be Perfectly Matched to 
avoid reflection at the interface.

• Equivalent to complex scaling

Region
of 

Interest

PML
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Possible Solution: Perfectly Matched Layers

• Complex scaling for Wave equation:

• PML (Conjugate Operator) for general linear waves:

H !→ ezAHe−zA

A = x · i∇+ i∇ · x

H !→ ezAHe−zA

A = x · vg(i∇) + vg(i∇) · x
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Complex scaling is easy

• Change coordinates

• Make layer perfectly matched

• Stable if 

A = x · i∇+ i∇ · x

ezA = Dilation(z)

k1vg,1(k) ≥ 0Picture from Becache, Fauqueux, 
Joly, JCP 188 (2003) 399–433.
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PML Instability

• PML unstable for some 
anisotropic waves (Becache, 
Fauqueux, Joly, 2003).

Pictures from Becache, Fauqueux, Joly, JCP 188 (2003) 399–433.
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Picture and graph are for different equations



Conjugate operators are hard

A = x · vg(i∇) + vg(i∇) · x

ezA = ?
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If stability condition not satisfied, complex scaling shifts spectrum the wrong way.



• Identify outgoing waves

• Filter them off

• Nothing hits the boundary

Phase Space Filters
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Outgoing waves
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Outgoing Waves, Schrodinger Equation

• 1D Schrodinger Equation

• Center of mass at               , x = vt width = σ + t/σ

ψ0(x) =
eivx

√
σ

exp
(
−x2

2σ2

)

ψ(x, t) =
eivx

√
σ + it/σ

exp
(
−(x− vt)2

2σ2(1 + it/σ)

)
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Outgoing Waves, Schrodinger Equation

• Outgoing wave

• Incoming wave

ψ0(x) = e+ivxe−(x−L)2/σ2

ψ0(x) = e−ivxe−(x−L)2/σ2

Trajectory = L + vt

Trajectory = L− vt
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Outgoing Waves, Schrodinger Equation

• Outgoing wave

• Incoming wave

ψ0(x) = e+ivxe−(x−L)2/σ2

ψ0(x) = e−ivxe−(x−L)2/σ2

Trajectory = L + vt

Trajectory = L− vt
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Outgoing Waves, Schrodinger Equation

• Outgoing wave

• Incoming wave

ψ0(x) = e+ivxe−(x−L)2/σ2

ψ0(x) = e−ivxe−(x−L)2/σ2

Trajectory = L + vt

Trajectory = L− vt
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Outgoing Waves, Schrodinger Equation

• Mixed wave:

ψ0(x) = e−ivxe−(x−L)2/σ2

+e+ivxe−(x−L)2/σ2
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• Mixed wave:

Outgoing Waves, Schrodinger Equation

ψ0(x) = e−ivxe−(x−L)2/σ2

Incoming wave Outgoing wave
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• Mixed wave:

Outgoing Waves, Schrodinger Equation

ψ0(x) = e−ivxe−(x−L)2/σ2

Incoming wave Outgoing wave
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• Mixed wave:

Outgoing Waves, Schrodinger Equation

ψ0(x) = e−ivxe−(x−L)2/σ2

Incoming wave

Problem solved!
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It really is that easy

• Windowed Fourier Transform:

• Outgoing waves:

The Wavelet Transform, Time Frequency 
Localization and Signal Analysis, Ingrid 

Daubechies, IEEE Trans. Info. Theory, Vol 
36 5 1990

ψ(x) =
∑

a∈Z

∑

b∈Z

ψa,be
ibk0xg(x− ax0)

g(x) = e−x2/σ2

ax0 > L

bk0 > σ−1
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Quantum Phase Space

• Quantum phase space is set of 
points                          ,  x a 
position and k a frequency.

• Heisenberg Uncertainty 
principle: localizing on region of 
volume                 causes 
error    .

• A function is localized near a 
point              if it is localized in 
position near       and it’s 
Fourier transform is localized 
near     . 

O(2π ln(ε))
ε

(x0, k0)
x0

k0

(x, k) ∈ RN × RN
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• Ambiguous waves

• Spreads in both directions

Outgoing Waves, Schrodinger Equation

ψ0(x) = ei0xe−(x−L)2/σ2

Issue can be resolved.
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Phase space filters
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Phase Space Filters
Outgoing
Waves:

ax0 > L

bk0 > σ−1

32Monday, July 7, 2008



Phase Space Filters
Outgoing
Waves:

ax0 > L

bk0 > σ−1
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Phase Space Filters
Outgoing
Waves:

ax0 > L

bk0 > σ−1
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A simpler version

• We want rightward moving 
waves near the boundary.

• Extend computational domain 

• Localize in boundary layer

[−L− w, L + w]N

1(x > L)1(k > kmin)1(x > L) = O+
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Step function built out of erfc(x) functions, as smooth as possible without overflowing.



How does it work?

• Take wave comprised of incoming and outgoing waves, plus interior waves.

ψ0(x) ≈ eivxg(x− L− 1) + e−ivxg(x− L− 1)
+ interior waves
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How does it work?

• Take wave comprised of incoming and outgoing waves, plus interior waves.

ψ0(x) ≈ eivxg(x− L− 1) + e−ivxg(x− L− 1)
+ interior waves

Our target
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How does it work?

• Take wave comprised of incoming and outgoing waves, plus interior waves.

• We don’t care about interior waves

1(x > L)ψ0(x) ≈ eivxg(x− L− 1) + e−ivxg(x− L− 1)
+ 0

ψ0(x) ≈ eivxg(x− L− 1) + e−ivxg(x− L− 1)
+ interior waves
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How does it work?

• Take wave comprised of incoming and outgoing waves, plus interior waves.

• We don’t care about interior waves

• Or incoming waves

1(x > L)ψ0(x) ≈ eivxg(x− L− 1) + e−ivxg(x− L− 1)
+ 0

ψ0(x) ≈ eivxg(x− L− 1) + e−ivxg(x− L− 1)
+ interior waves

1(k > kmin)1(x > L)ψ0(x) ≈ eivxg(x− L− 1) + 0
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How does it work?

• Or incoming waves

• Symmetry is always good (for stability, etc):

1(k > kmin)1(x > L)ψ0(x) ≈ eivxg(x− L− 1) + 0

1(x > L)1(k > kmin)1(x > L)ψ0(x) ≈ eivxg(x− L− 1)
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How does it work?

• Or incoming waves

• Symmetry is always good (for stability, etc):

• Operator          localizes outgoing waves, and lets us remove them:

1(k > kmin)1(x > L)ψ0(x) ≈ eivxg(x− L− 1) + 0

1(x > L)1(k > kmin)1(x > L)ψ0(x) ≈ eivxg(x− L− 1)

ψ0(x)−O+ψ0(x) = 0 + e−ivxg(x− L) + Interior Waves

O+
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let 
let           on domain 

for n = 1 to       :

    output   
 

Propagation Algorithm

[−L− w, L + w]N

Tmax/Ts

u(x) := u0(x)
Ts := O(w/3vmax ln(ε))

u(x)←
[

∏

all sides

(1−O+)

]
u(x)

u(x) = u(x, nTs)

u(x)← ei∆Tsu(x)
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let 
let           on domain 

for n = 1 to       :

    output   
 

Propagation Algorithm

[−L− w, L + w]N

Tmax/Ts

u(x) := u0(x)
Ts := O(w/3vmax ln(ε))

u(x)←
[

∏

all sides

(1−O+)

]
u(x)

u(x) = u(x, nTs)

u(x)← ei∆Tsu(x)

Not enough time to 
travel distance w

41Monday, July 7, 2008



let 
let           on domain 

for n = 1 to       :

    output   
 

Propagation Algorithm

[−L− w, L + w]N

Tmax/Ts

u(x) := u0(x)
Ts := O(w/3vmax ln(ε))

u(x)←
[

∏

all sides

(1−O+)

]
u(x)

u(x) = u(x, nTs)

u(x)← ei∆Tsu(x)

Not enough time to 
travel distance w

Propagate any way you like.
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let 
let           on domain 

for n = 1 to       :

    output   
 

Propagation Algorithm

[−L− w, L + w]N

Tmax/Ts

u(x) := u0(x)
Ts := O(w/3vmax ln(ε))

u(x)←
[

∏

all sides

(1−O+)

]
u(x)

u(x) = u(x, nTs)

u(x)← ei∆Tsu(x)

Not enough time to 
travel distance w

Propagate any way you like.

(Nothing reached the boundary 
yet.)
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let 
let           on domain 

for n = 1 to       :

    output   
 

Propagation Algorithm

[−L− w, L + w]N

Tmax/Ts

u(x) := u0(x)
Ts := O(w/3vmax ln(ε))

u(x)←
[

∏

all sides

(1−O+)

]
u(x)

u(x) = u(x, nTs)

u(x)← ei∆Tsu(x)

Not enough time to 
travel distance w

Propagate any way you like.

(Nothing reached the boundary 
yet.)

Filter outgoing waves 
about to reach the 

boundary.
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let 
let           on domain 

for n = 1 to       :

    output   
 

Propagation Algorithm

[−L− w, L + w]N

Tmax/Ts

u(x) := u0(x)
Ts := O(w/3vmax ln(ε))

u(x)←
[

∏

all sides

(1−O+)

]
u(x)

u(x) = u(x, nTs)

u(x)← ei∆Tsu(x)

Not enough time to 
travel distance w

Propagate any way you like.

(Nothing reached the boundary 
yet.)

Filter outgoing waves 
about to reach the 

boundary.

Next propagation step is 
accurate: waves which would 
have reached boundary were 

filtered.
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Phase Space Filtering, Schrodinger Equation

•                 is “blurring” operator in frequency domain

• Characteristic distance of “blurring” (in k domain)

1(x1 > L)

[ ̂1(x1 > L)f ](k) ≈ (...)e−k2/w2
! f̂(k)

kmin = O(ln(ε−1)/w)

O+ = 1(x1 > L)1(k > kmin)1(x1 > L)
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Schrodinger Equation Results
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• Measured error as 
function of frequency of 
initial data.

• Errors are large for low 
frequencies, small for 
high.

• By increasing width of 
buffer, one reduce errors 
for low frequencies.

Schrodinger equation: Error vs Frequency
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Phase Space Filters for Vector Systems
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Vector Systems

• Linear wave equation:

!ut(x, t) = H!u(, t)
H(i∇) = −H†(i∇)

H =




H11(k) . . . H1N (k)
. . . . . . . . .
−H1N (k) . . . HNN (k)




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Wavepackets

• Not a 1-way wavepacket:

• Will split into N different wavepackets.

u0(x) =




eikxg(x)

. . .
0




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Wavepackets

• Diagonalize hamiltonian to find dispersion relation

• For each frequency,      is skew adjoint matrix. Can always do this.

• Plane Waves:

H = D†




iω1(k) . . . 0
. . . iωj(k) . . .
0 . . . iωM (k)



D

H

h(x, t) =




d1,1(k)

. . .
d1,N (k)



 ei(kx−ω1(k)t)
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Wavepackets

• Localize a plane wave:

u0(x) =




d11(k0)

. . .
d1N (k0)



 eik0xg(x)
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Wavepackets

• Localize a plane wave:

• Wavepacket propagation:

• (Fourier transform and do stationary phase)

u0(x) =




d11(k0)

. . .
d1N (k0)



 eik0xg(x)

u(x, t) =




d11(k0)

. . .
d1N (k0)



 ei(k0x−ω1(k0)t)[eDtg](x−∇kω1(k0)t)
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Wavepackets

• Localize a plane wave:

• Wavepacket propagation:

• (Fourier transform and do stationary phase)

u0(x) =




d11(k0)

. . .
d1N (k0)



 eik0xg(x)

u(x, t) =




d11(k0)

. . .
d1N (k0)



 ei(k0x−ω1(k0)t)[eDtg](x−∇kω1(k0)t)

Translation
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Wavepackets

• Localize a plane wave:

• Wavepacket propagation:

• (Fourier transform and do stationary phase)

u0(x) =




d11(k0)

. . .
d1N (k0)



 eik0xg(x)

u(x, t) =




d11(k0)

. . .
d1N (k0)



 ei(k0x−ω1(k0)t)[eDtg](x−∇kω1(k0)t)

Dispersion

Translation
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Wavepackets

• Envelope obeys Schrodinger like equation:

•                       is the Hessian of the dispersion relation. Hω1(k0)

[̂eDtg](k) = exp((ωq(k)− ω1(k0)− [∇k(ωq)](k0)(k − k0))t)ĝ(k)

≈ e(k−k0)[Hω1(k0)](k−k0)tĝ(k)

Hessian is Quadratic Differential 
operator, like Laplacian.
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Wavepackets

• Schrodinger:

• Vector system:

u0(x) =




d11(k0)

. . .
d1N (k0)



 eik0xg(x)

ψ0(x) = eikxe−x2/σ2

position = kt

position = [∇kω1(k0)]t = vg(k0)t
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Phase space filtering for vector systems

• We want rightward moving 
waves near the boundary.

• Extend computational domain 

• Localize in boundary layer

[−L− w, L + w]N
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Step function built out of erfc(x) functions, as smooth as possible without overflowing.



Phase space filtering for vector systems

• Project onto rightward-moving group velocities

• Un-diagonalize to project onto rightward moving waves

• Localize:

P (k) =




1(∇kω1(k) · e1 > 0) . . . 0
... . . .
0 . . . 1(∇kωM (k) · e1 > 0





D†P (k)D

O+ = 1(x1 > L)D†P (k)D1(x1 > L)
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let 
let           on domain 

for n = 1 to       :

    output   
 

Propagation Algorithm

[−L− w, L + w]N

Tmax/Ts

u(x) := u0(x)

u(x)←
[

∏

all sides

(1−O+)

]
u(x)

u(x) = u(x, nTs)

Ts = O(w/3vmax ln(ε)),

u(x)← eiHTsu(x)
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Numerical Results, Anisotropic Waves
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Maxwell’s Equations in Birefringent Medium

• In a birefringent medium, Maxwell’s equations take the form

• The wavefield is defined as                            

• Assume     is a scalar, and assume  

• Then with

H =
[

0 −µ−1/2∇× ε−1/2

ε−1/2∇× µ−1/2 0

]

u(x, t) = (
√

µ !H,
√

ε !E)T

µ ε =




1 b 0
b 1 0
0 0 c





f = (1/2)(
√

1 + b +
√

1− b), g = (1/2)(−
√

1 + b +
√

1− b),

ωj=1,2(k) = (−1)1+jic−1|k|

ωj=3,4(k) = (−1)1+ji
√

(f2 + g2)(k2
1 + k2

2)− 4fgk1k2

ωj=5,6(k) = 0.
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Maxwell’s Equations,   
mode

Birefringent medium, b=0.25
TMz
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Errors for Maxwell’s Equations

t d 1L 0 1L|u|/|u!u|pus

t d "L 0 "L|u|/|u!u|pus

t d 2L 0 2L|u|/|u!u|pus

Maxwell’s Equations: Error vs Frequency

65Monday, July 7, 2008



Linearized Euler Equations

• Euler equations, linearized about jet flow:

• The dispersion relations are:

H =




M∂x1 −∂x1 −∂x2

−∂x1 M∂x1 0
−∂x2 0 M∂x1





ω1(k) = Mk1 + |k|,
ω2(k) = Mk1 − |k|,
ω3(k) = Mk1
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Euler Equations Results, M=0.5
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Linearized Quasi-Geostrophic Equations

• Quasi-geostrophic equations, midlatitude:

•     is a streamfunction:

• Geostrophic balance: Coriolis force = horizontal pressure gradient

• Anisotropic and non-local

V = Mean wind, F ∼ (earth’s rotation)2

g
β̃ = FV + β,β = R cos(φ)

ψ !v = ∇⊥ψ

H = V ∂x − β̃(−∆ + F )−1∂x
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\phi = latitude. 

Mention that Tom Hagstrom prompted this example.



Dispersion Relations

• Complicated dispersion 
relation, not quite hyperbolic

• PML unstable in y direction for

k0 < 0
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Dispersion Relations

• Complicated dispersion 
relation, not quite hyperbolic

• PML unstable in y direction for

• PML unstable in x direction on 
irregular region

k0 < 0

Unstable Stable
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Tom Hagstrom can’t fix this by completing the square. 



Quasi-Geostrophic 
Equations
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Quasi-geostrophic

• Measured error as 
function of frequency of 
initial data.

• Errors are large for low 
frequencies, small for 
high.

• By increasing width of 
buffer, one reduce errors 
for low frequencies.

Errors
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Higher error for quasi-geostrophic due to nonlocality. Can be fixed.



Stability
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Stability of Phase Space Filtering

• Operator       is self-adjoint, and                      .

• Implies filtering is dissipative:

• Propagation operator has norm 1:

• Numerical solution is strongly stable:

O+ σ(O+) ⊆ [0, 1]

σ(1−O+) ⊆ 1− [0, 1] = [0, 1]

||eHTs

[
∏

all sides

(1−O+)

]
|| ≤ ||eHTs ||

∏

all sides

||(1−O+)|| ≤ 1
∏

all sides

1 = 1

||u(x, t)|| ≤ ||u0(x)||
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PML

Phase Space Filter
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Low Frequencies
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The Low Frequency Problem

• Heisenberg Uncertainty principle limits phase space filters for low 
frequencies.

• Filter width                             :

• PML has similar issues: low frequencies dissipate over long distances.

• Dirichlet-to-Neumann immune to this problem in homogeneous case. In 
inhomogeneous case, Dirichlet-to-Neumann built using approximations valid 
only for high frequencies (Pseudo/Paradifferential calculus, see Szeftel).

w = O(ln(ε)/kmin)

Memory = O((kmax/kmin)N )
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Filter Regions in Phase Space

Multiscale Solution

• Narrow filter for high frequency.

• Use filter with double the width 
to filter low frequencies; cut 
sampling rate in half.

• Filter width w = O(ln(ε)/kmin)

Memory = O(ln(ε) log2(kmax/kmin))
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The Low Frequency Problem: Resolution	

• Implemented for 1-dimensional 
Schrodinger equation

• Cost:

• If         is unknown, cost is:

• Works for long range potential/
inhomogeneity.

kmin

O(log2(kmax/kmin))

O
(
Tmax log2

(
Tmax

vk≈0

L

))
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Conclusion

• Phase space filtering a new method of filtering outgoing waves.

• Works for anisotropic, inhomogeneous and even non-local waves.

• Stable and accurate: confirmed by rigorous theorem and numerical tests.

• [1] Open Boundaries for the Nonlinear Schrodinger Equation, with A. Soffer. JCP Vol. 225, Issue 2, p.p.
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