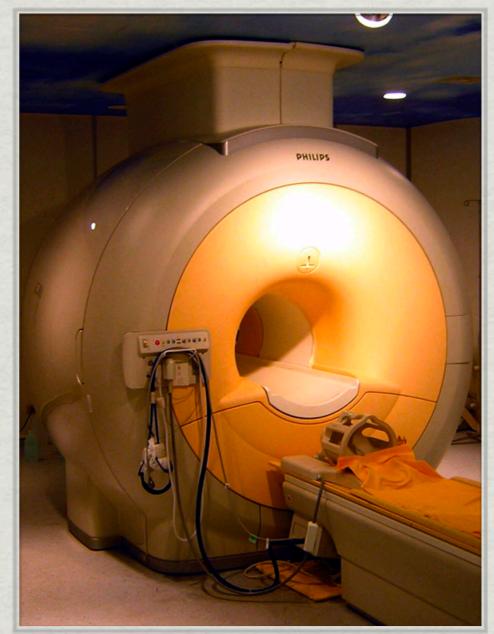
Phase Space Analysis in Medical Imaging

Chris Stucchio Courant Inst. and Trading Games, Inc. Collaboration with L. Greengard.

Magnetic Resonance Imaging

- * Excellent soft tissue contrast.
- * No radiation.
- * 2003 Nobel Prize (Lauterberger, Mansfield). Damadian maybe deserves credit too?



MY LATERAL SPINE

Objectives and Challenges

GOALS

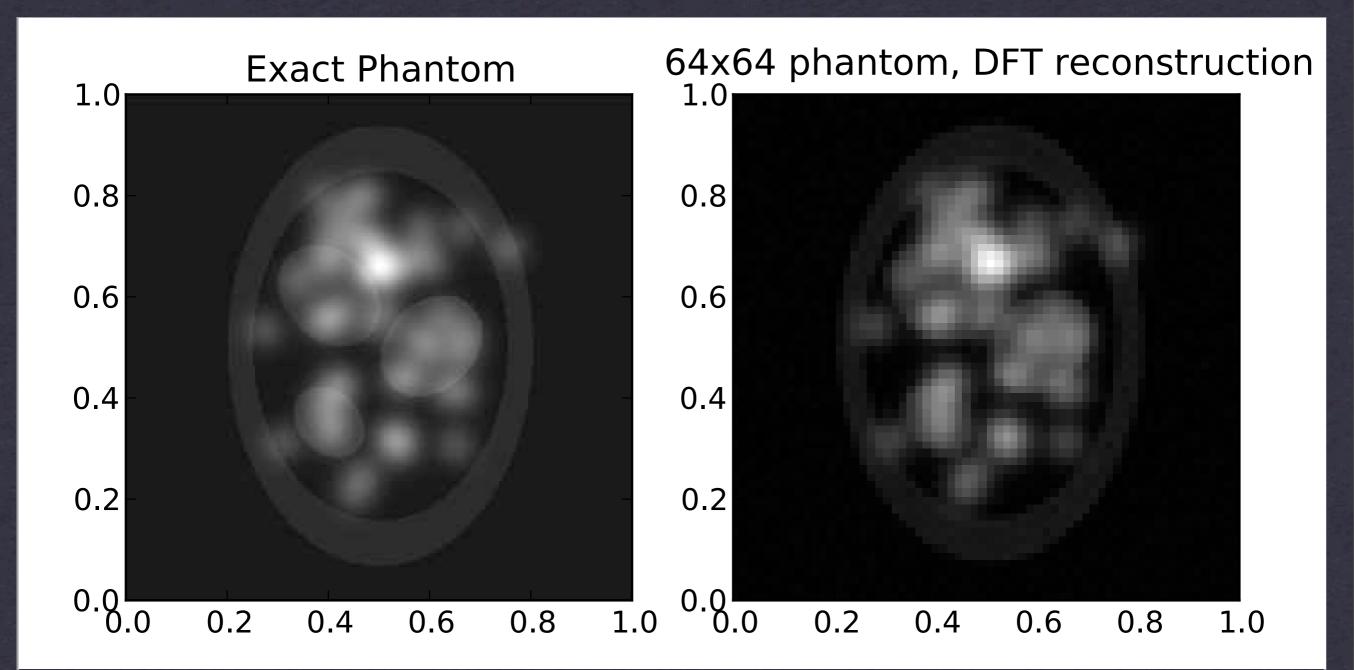
CHALLENGES

Show radiologist accurate pictures

* Quantify anatomical features Noise

* Artifacts

* Ambiguity

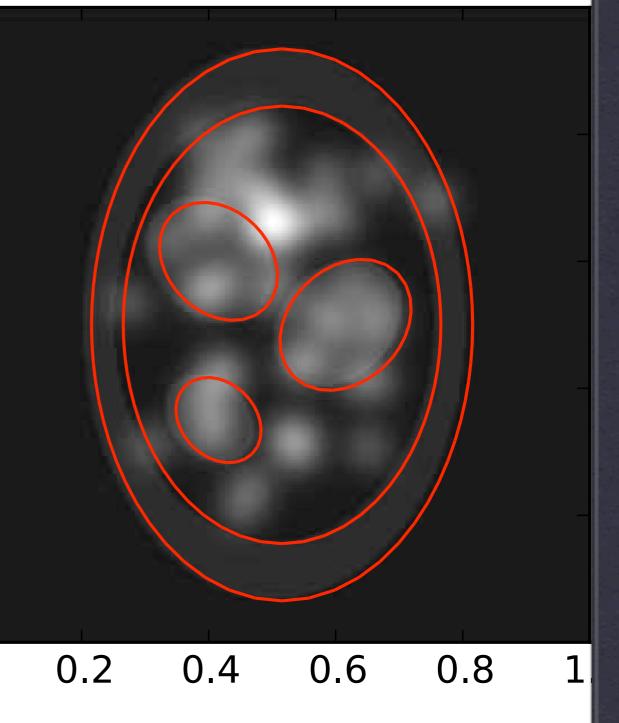


Accurate Pictures

Segment Anatomical Features Separate into distinct

regions

Exact Phantom



Exact Phantom

SKULL

0.2

Identification

Label the segmented regions

STARBOARD OVAL BRAIN PART

0.6

PORT-OVAL BRAIN PART

1

0.8

GREAT BIG BRAIN TÚMOUR

0.4

Exact Phantom

Diagnosis

Draw conclusion from image data

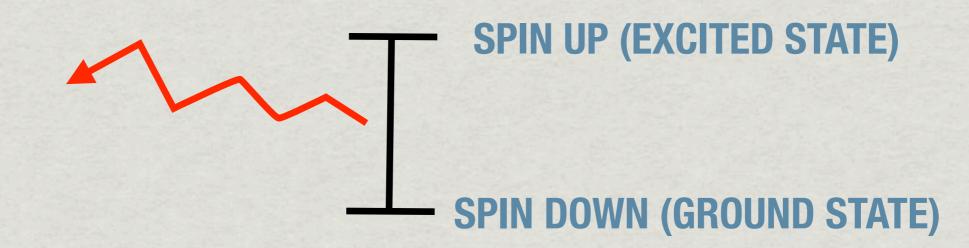
PATIENT IS SICK

GREAT BIG BRAM TUMOUR

0.2 0.4 0.6 0.8 1

- # Big Magnet: 1-2 Tesla
- * Nucleus of atoms has spin

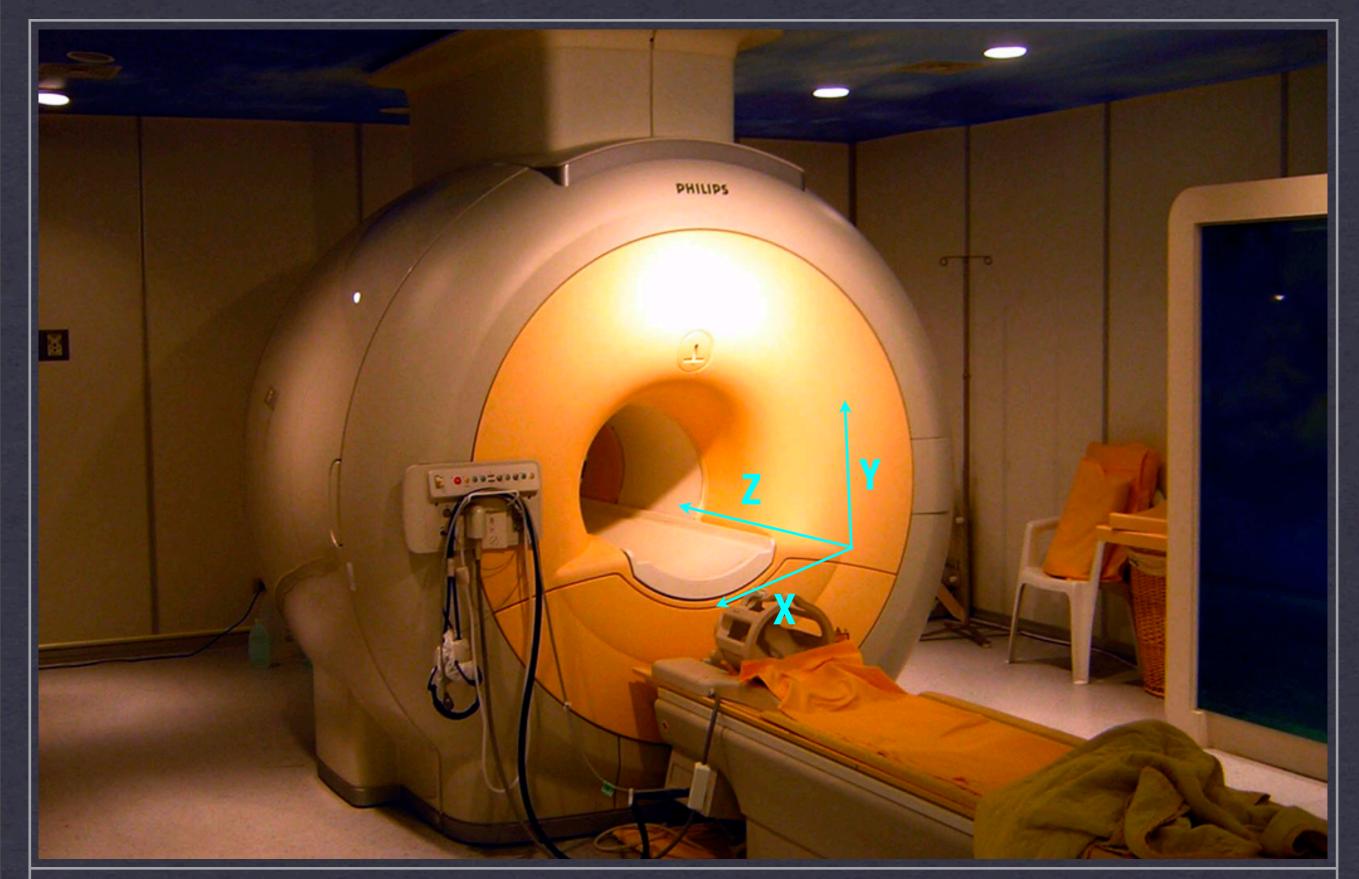
* Level Splitting: magnetic field breaks spin symmetry



- * Excited state decays to ground, emits radiation.
- * Measuring the radiation gives information on object.

* Bloch Equation (macroscopic model): $\partial_t \vec{M}(x,t) = \gamma \vec{M} \times \vec{B}(x,t) - \frac{P_{1,2}\vec{M}}{T_2} - \frac{P_3(\vec{M}(x,t) - M_0(x))}{T_1}$ $M_0(x) = C\rho(x)$ $M(x,0) = M_0(x)$

* M(t) is magnetization, B(t) the magnetic field.



HOW AN MRI WORKS COORDINATE SYSTEM

* Hit system with weak RF pulse (excitation): $\vec{B}(x,t) = [0, f(t)w(x_z), 0]$

$$\vec{M}(x,t) \times \vec{B}(x,t) = [0,0,M_0(x)] \times [0,f(t)w(x_3),0]$$
$$= [-M_0(x)f(t)w(x_3),0,0]$$

* Rotates spins from z-direction into x-y plane

* Switch off excitation pulse, use probe field:

 $\vec{B}(t) = [B_0 + \vec{G}(t) \cdot [x_1, x_2, 0]^T]\vec{z}$ * X-Y components decoupled from Z component

* Substitution: $M(t) = \vec{M}_x(t) + i\vec{M}_y(t)$

***** Bloch Equation:

$$\partial_t M(x,t) = \left[-i\gamma (B_0 + G(t) \cdot x) - \frac{1}{T_2} \right] M(x,t)$$
$$M(x,t_0) = \rho(x) w(x_z) h(t_0)$$

* Use RF receiver coils measure emission in the sample.

 $S(t) \sim \int M(x,t)dx + \text{noise}$

***** Solution:

$$M(x,t) = \rho(x)w(x_3)e^{-i\gamma B_0 t}e^{-i\gamma(\int_{t_0}^t G(t')dt') \cdot x}e^{-t/T_2}$$

***** Simplify:

$$\vec{k}(t) = \gamma \int_{t_0}^t G(t')dt'$$
$$M(x,t) \mapsto e^{i\gamma B_0 t} M(x,t)$$

***** Solution:

$$M(x,t) = \rho(x)w(x_3)e^{-ik(t)\cdot x}e^{-t/T_2}$$

$$S(t) \sim e^{-t/T_2} \int \rho(x) w(x_3) e^{-ik(t) \cdot x} dx + \text{noise}$$

* Signal:

$$S(t) \sim e^{-t/T_2} \hat{\rho}(k(t)) + \text{noise}$$

* An MRI measures the Continuous Fourier Transform of the density.

Image Reconstruction ACCURATE PICTURES

Fourier Inversion

Hugely ill posed problem.

Given $\hat{\rho}(k_1), \ldots, \hat{\rho}(k_N)$, find $\rho(x)$

 $\exists f(x) \neq 0, [\rho + f](k_{1,...,N}) = \hat{\rho}(k_{1,...,N})$

Fourier Inversion

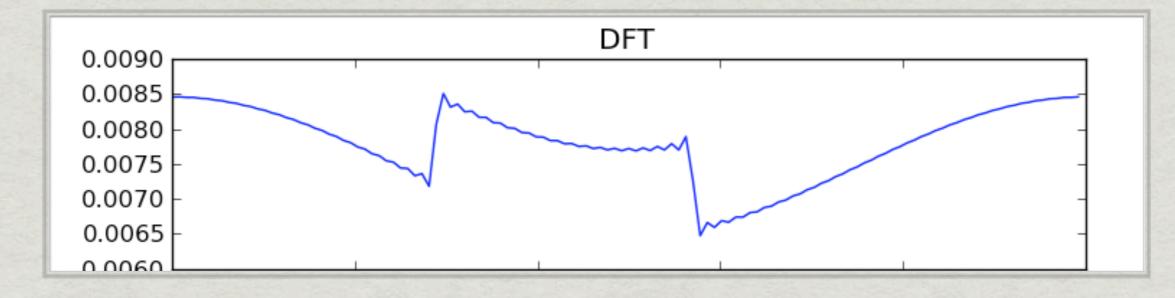
* Fourier's Theorem. Assume Cartesian sampling.

$$\rho(x) \approx \sum_{\vec{n}} \hat{\rho}(2\pi\vec{n}) e^{-i2\pi\vec{n}x}$$

* Best approximation to density in $L^2([0,1]^2)$ norm

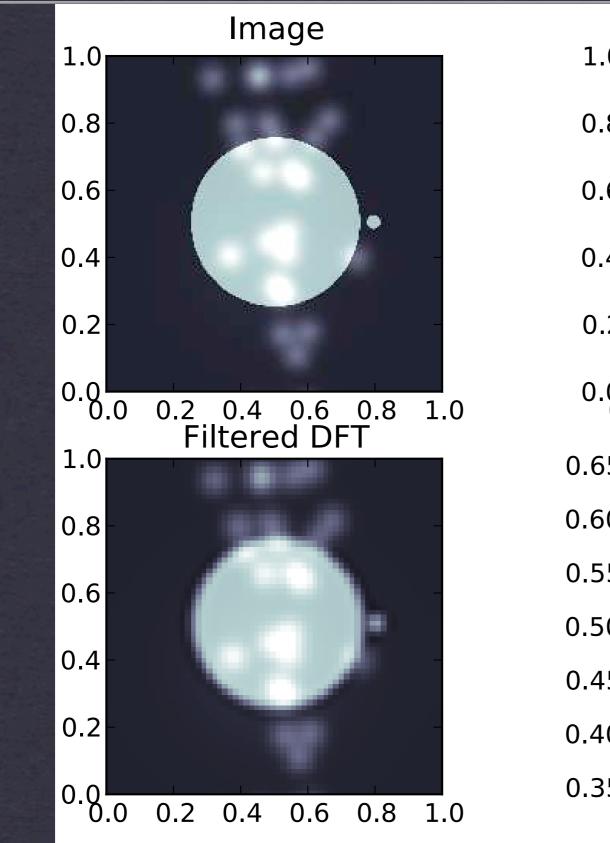
Fourier Inversion

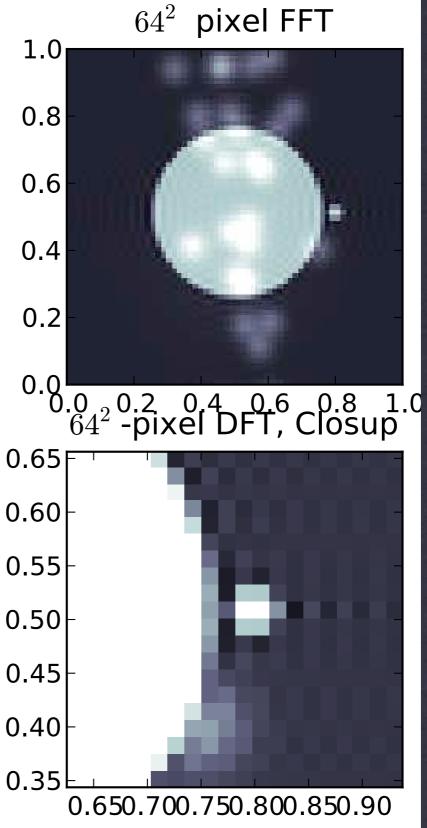
* Fourier Transform not convergent pointwise



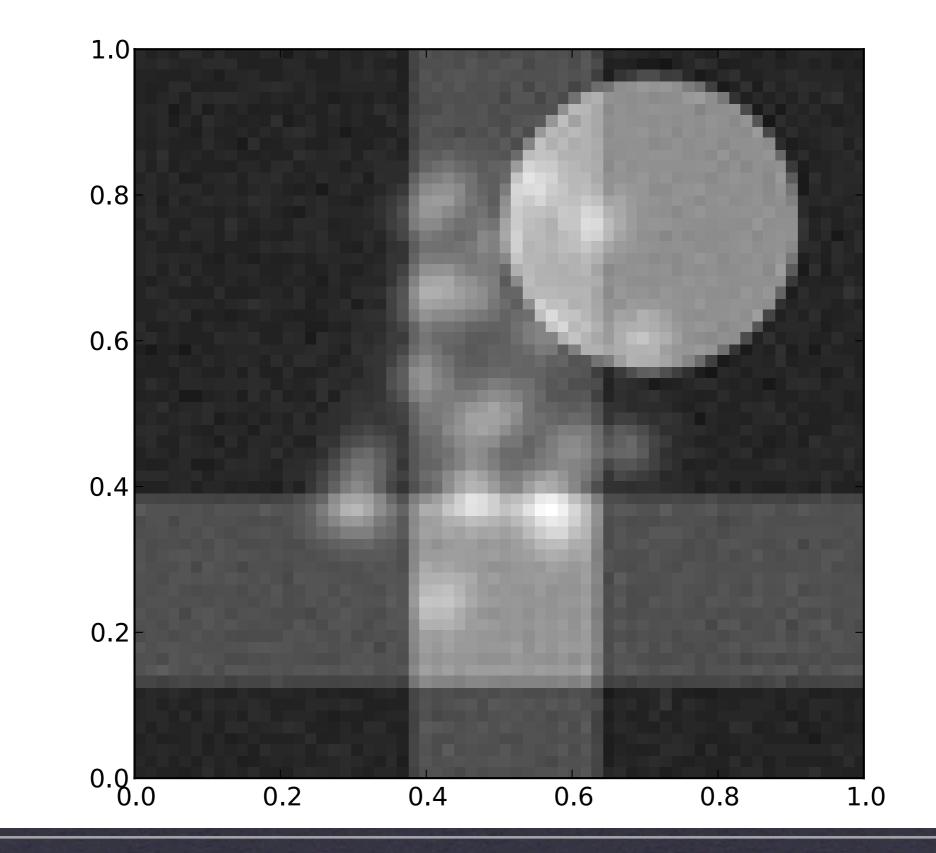
***** Regularization discards information

$$\rho(x) \approx \sum_{\vec{n}} \hat{\rho}(2\pi\vec{n})w(\vec{n})e^{-i2\pi\vec{n}x}$$





FOURIER INVERSION



OTHER ARTIFACTS

SMALL CURVATURE POSES PROBLEMS

Current Solution

* Reconstruct image using regularized discrete Fourier transform:

$$\rho(x) \approx \sum_{\vec{n}} \hat{\rho}(2\pi\vec{n}) w(\vec{n}) e^{-i2\pi\vec{n}x}$$

* Clean up regularized image in x-domain.

* Segment/identify based on cleaned up image.

Segmentation OUTLINING THE IMPORTANT FEATURES

Segmentation

GOALS

- * Segmentation by anatomy/composition outline the cancerous part
- Segmentation by perception draw the same outlines as a human
- # Image-space segmentation separate based on image boundaries

Image boundaries

* Image boundaries are places where image composition changes sharply.

In medical images, this happens at discontinuities of image.

* Not true in other modalities.

Discontinuities

- * Want to find discontinuities of an image.
- * Image domain methods fail due to artifacts.
- * Want to find discontinuities from raw MRI data, i.e. from samples of Fourier transform of image.

Discontinuities

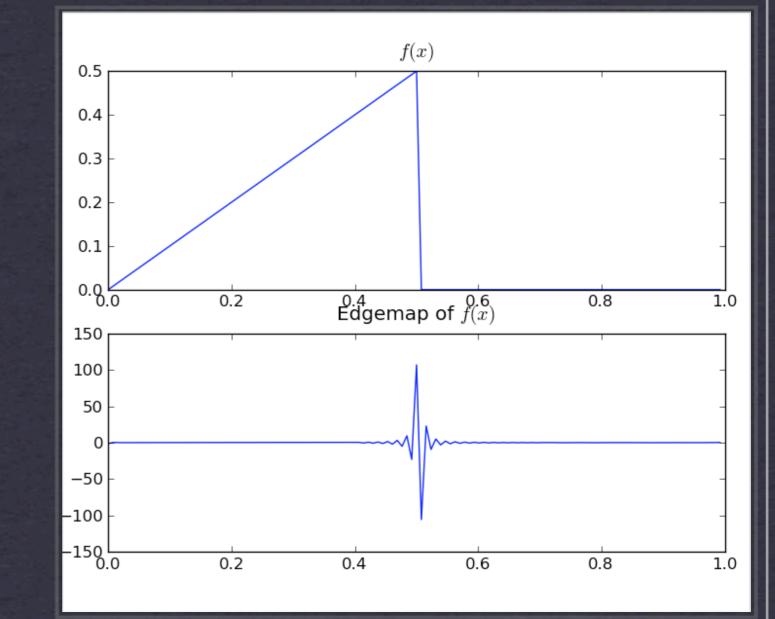
* Simple model: a 1-d function with a discontinuity:

$$\int e^{ikx} f(x) dx = e^{ikx_0} \frac{f(x_0^+) - f(x_0^-)}{ik} + O(k^{-2})$$

If we localize on high frequencies, we can extract edges.

1D Edge Detection

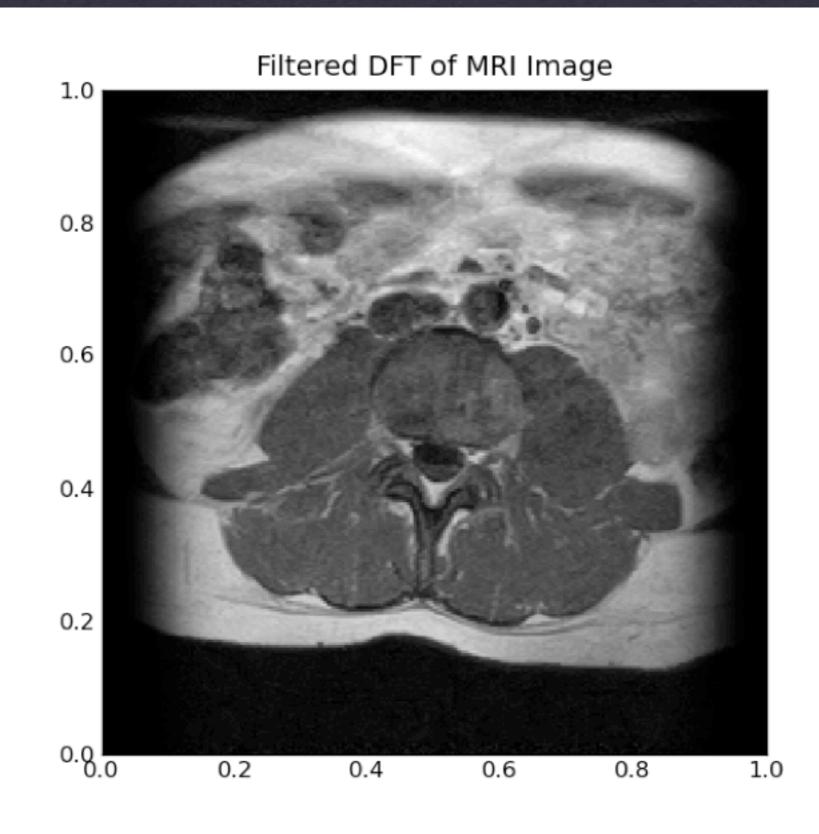
Laplace Filters, Gradient Filters, Concentration Kernels, etc.



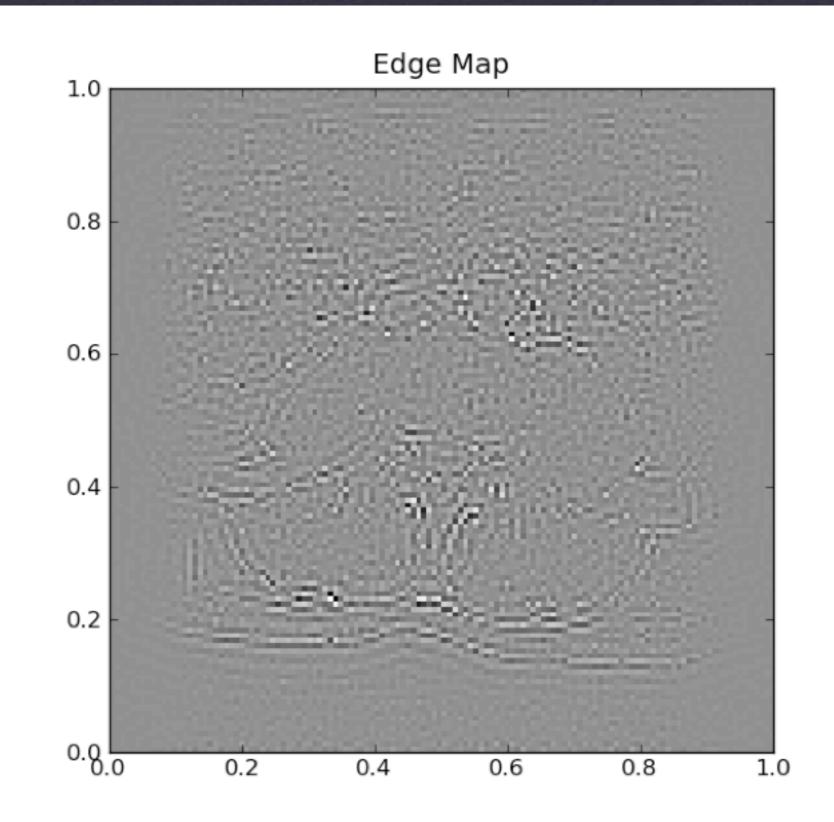
STATE OF THE ART: CONCENTRATION KERNELS, C.F. TADMOR/GELB/ETC

2D Edge Detectors

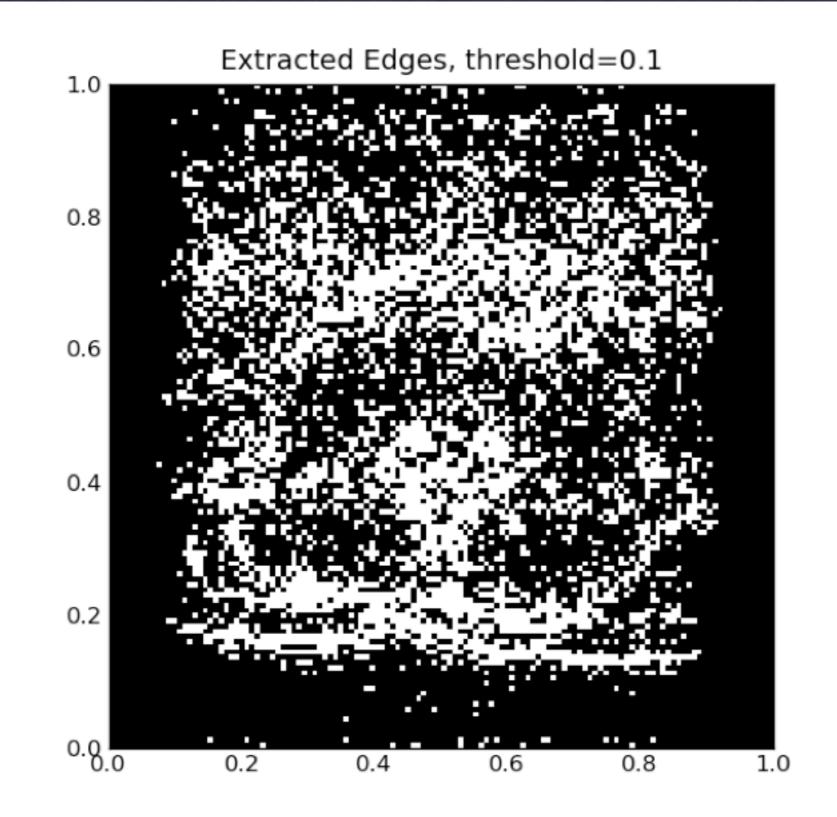


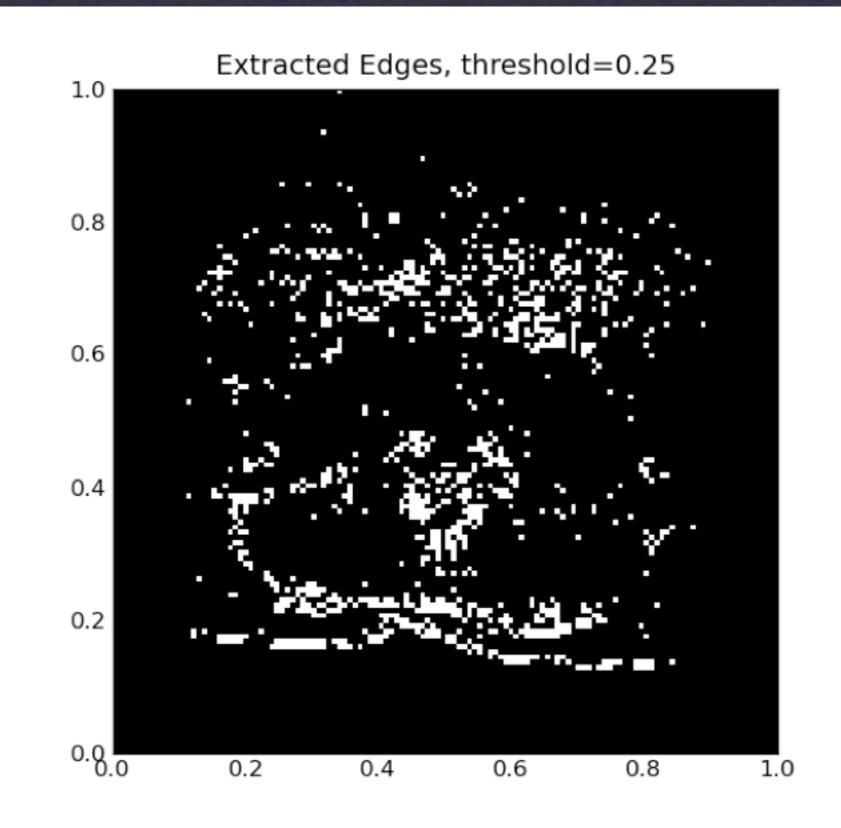


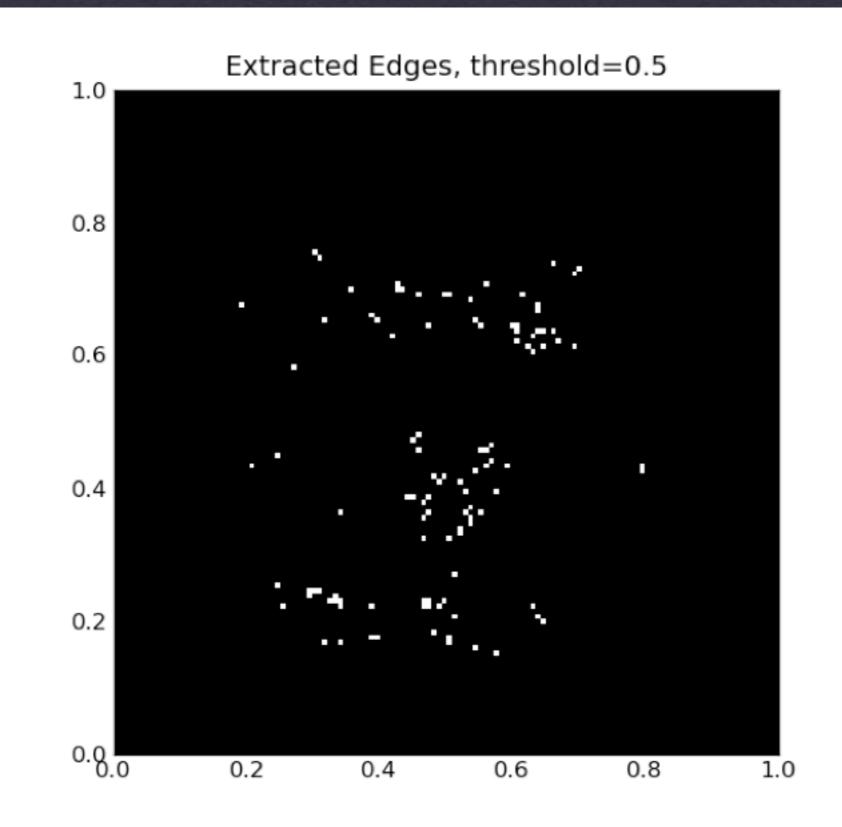
RESULT OF HIGH FREQUENCY FILTERS EDGE DETECTOR RESOLUTION IS HALF THAT OF IMAGE

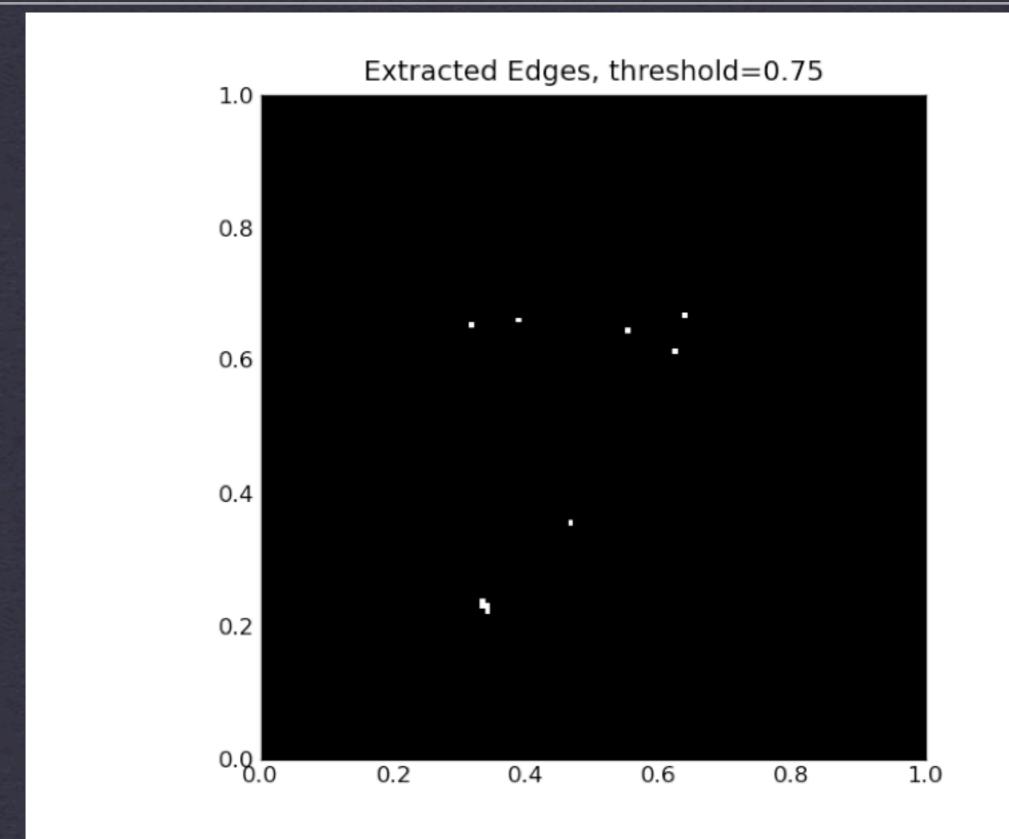


RESULT OF HIGH FREQUENCY FILTERS EDGE DETECTOR RESOLUTION IS HALF THAT OF IMAGE





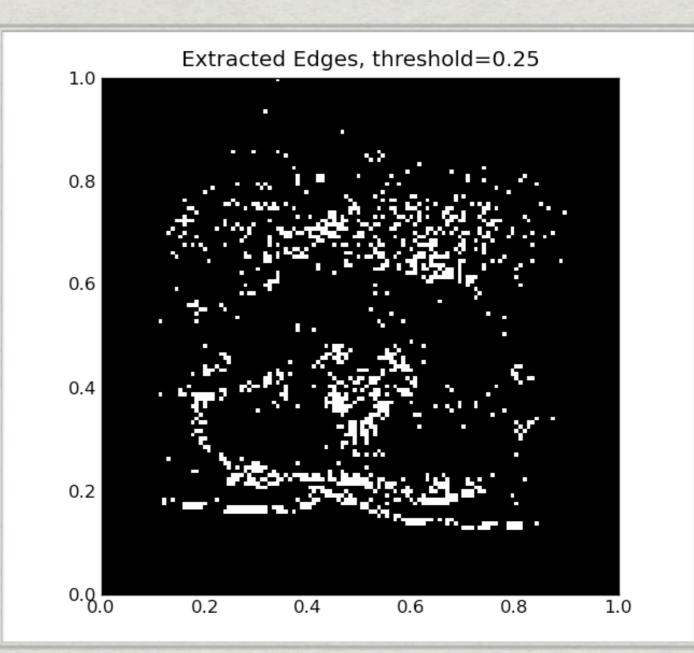




Problems

* Noisy

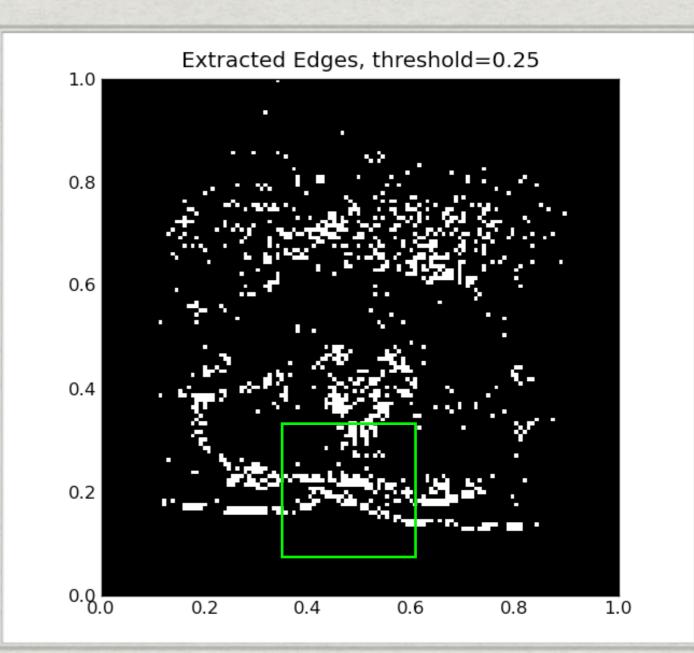
- * Does not separate regions
- * Not obvious how to "fill in the holes"



Problems

* Noisy

- * Does not separate regions
- * Not obvious how to "fill in the holes"



Problems

* Noisy

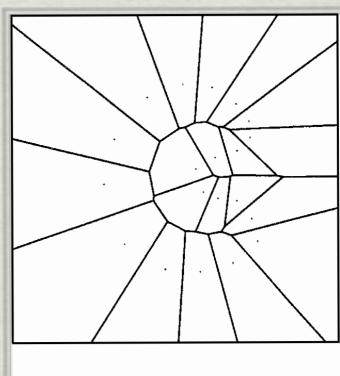
- * Does not separate regions
- * Not obvious how to "fill in the holes"

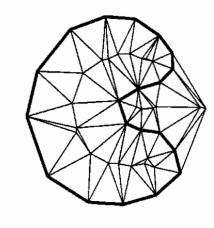
Boundary Reconstruction

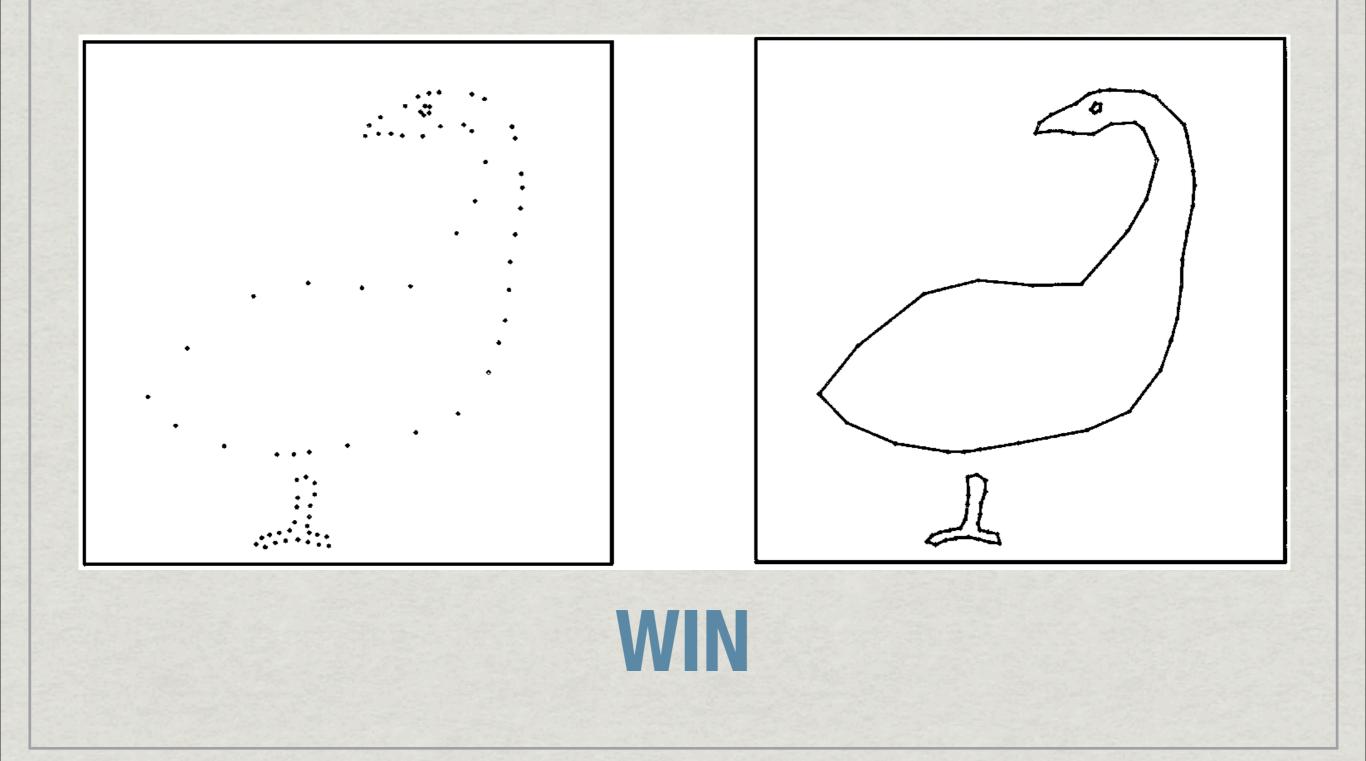
- * Combinatorial methods
- * Active Contours/Snakes/Level Sets
- * Bayesian Methods

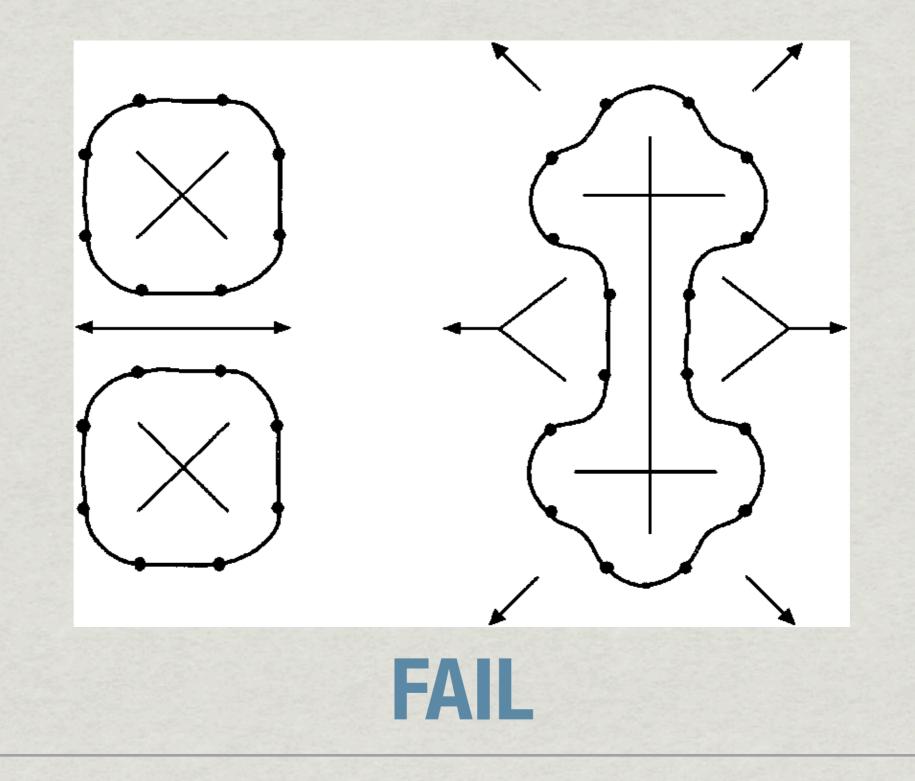
- * Delaunay-methods: find the Crust of a point-set.
- * Start with Delaunay graph.
- If a disk touches both ends of an edge in the Delaunay graph also touches a third vertex, then delete the edge.

(AMENTA, BERN, DEY, KUMAR, EPPSTEIN)





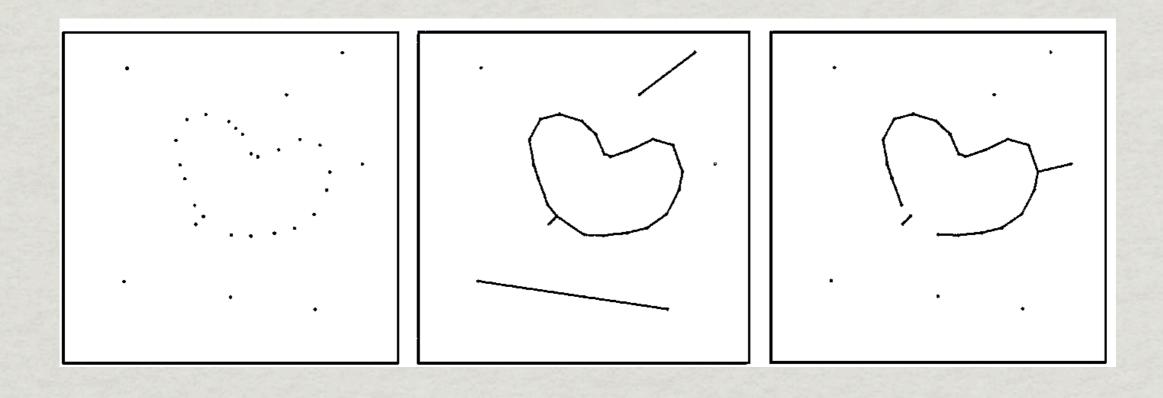




* Fundamental requirements:

sample spacing $\leq O(\text{curve separation})$

Sensitive to noise:



Active Contours/Snakes

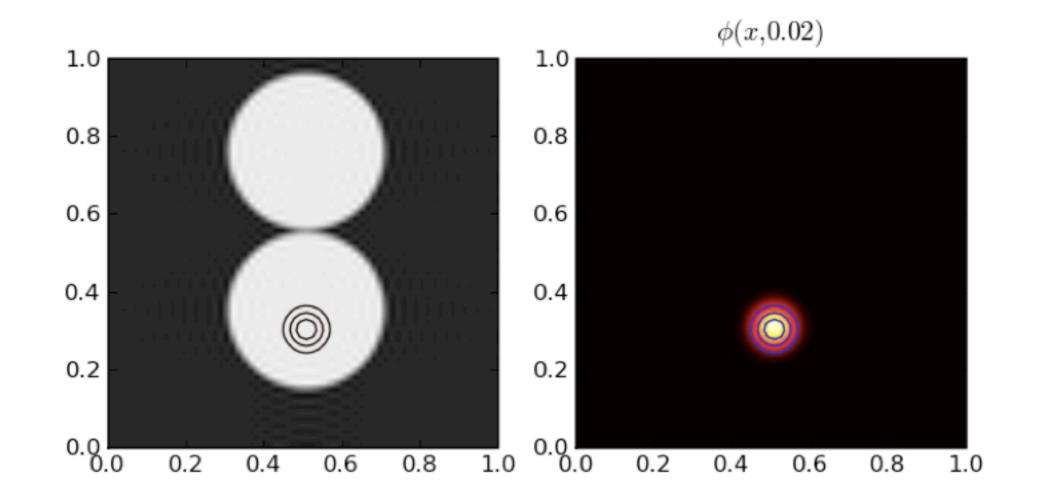
- * Start with small circle
- * Expand circle, stopping at edges.
- * Try to maintain curve smoothness.

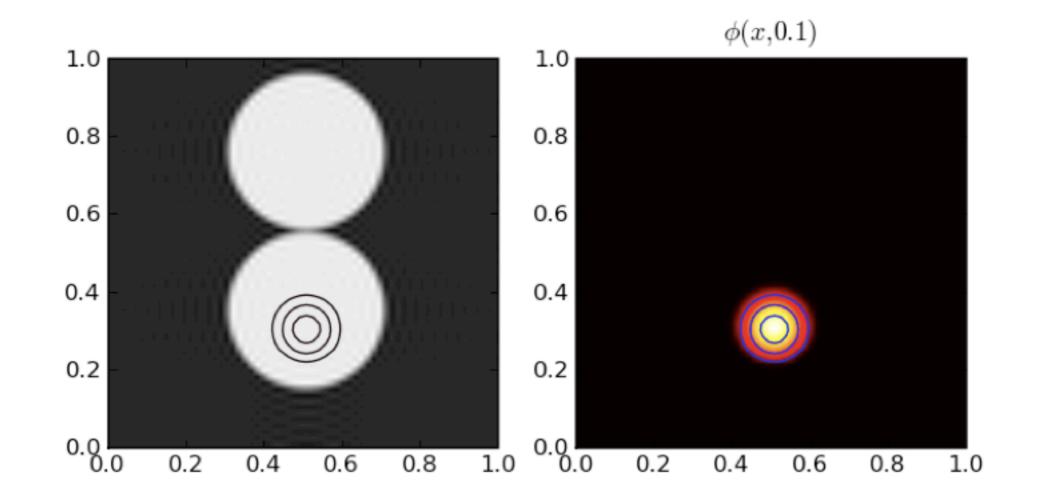
Level Set Segmentation

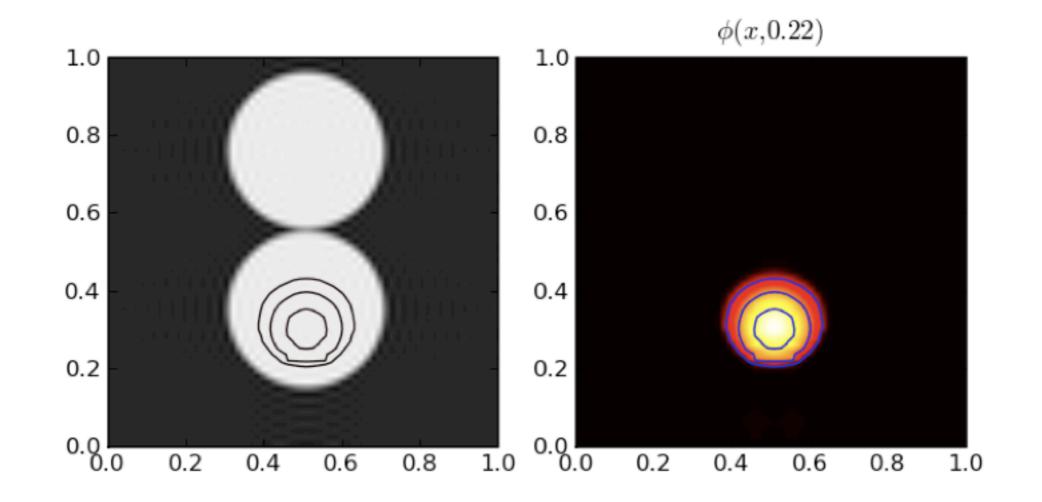
* Don't study contour directly - study level sets of auxiliary function instead.

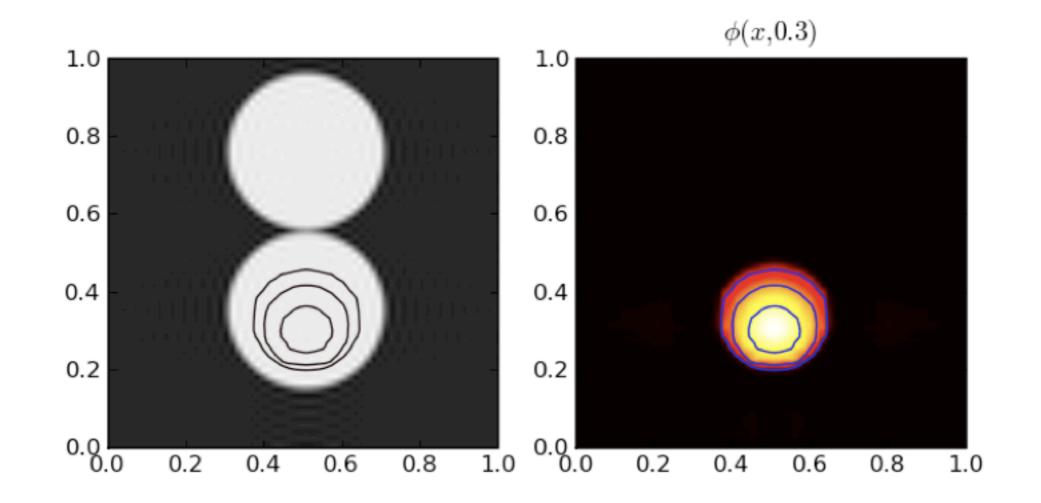
$$\partial_t \phi(x,t) = \frac{|\nabla \phi(x,t)|}{1 + \alpha E(x)} f(\phi(x,t) - 1)/2 + 2\Delta \phi(x,t) + regularization$$

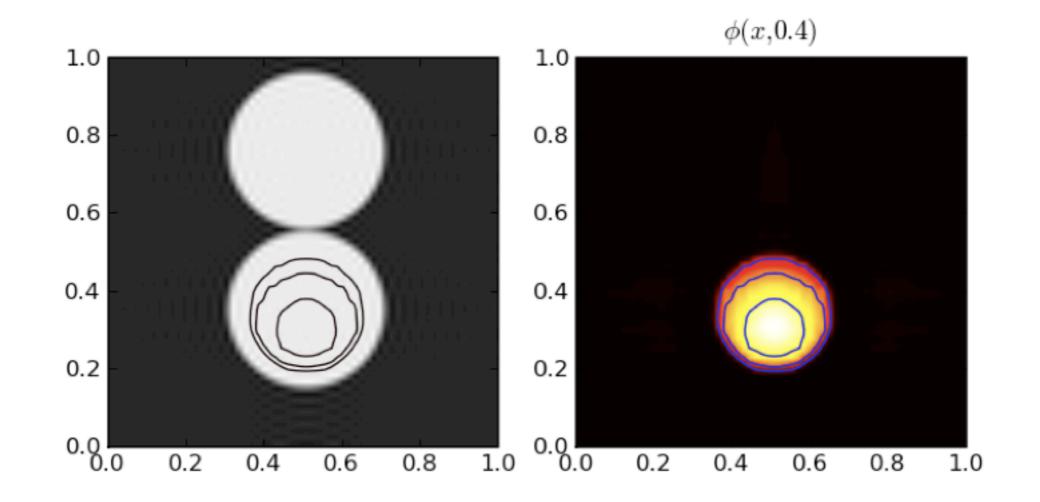
* E(x) is result of edge detectors.

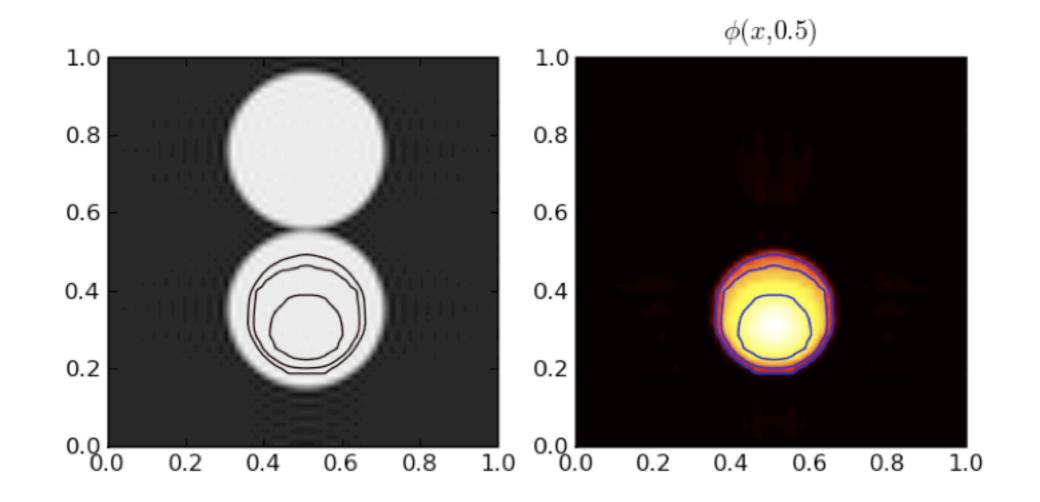


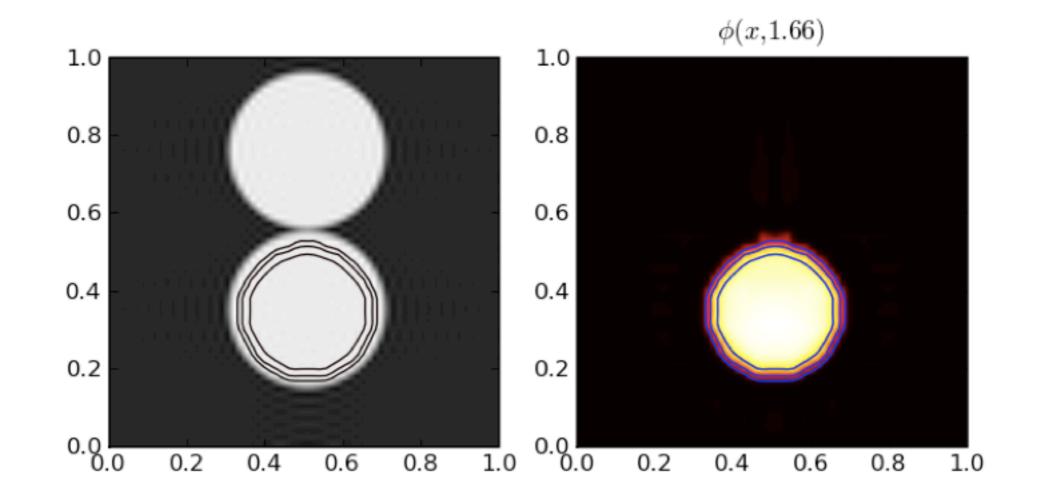


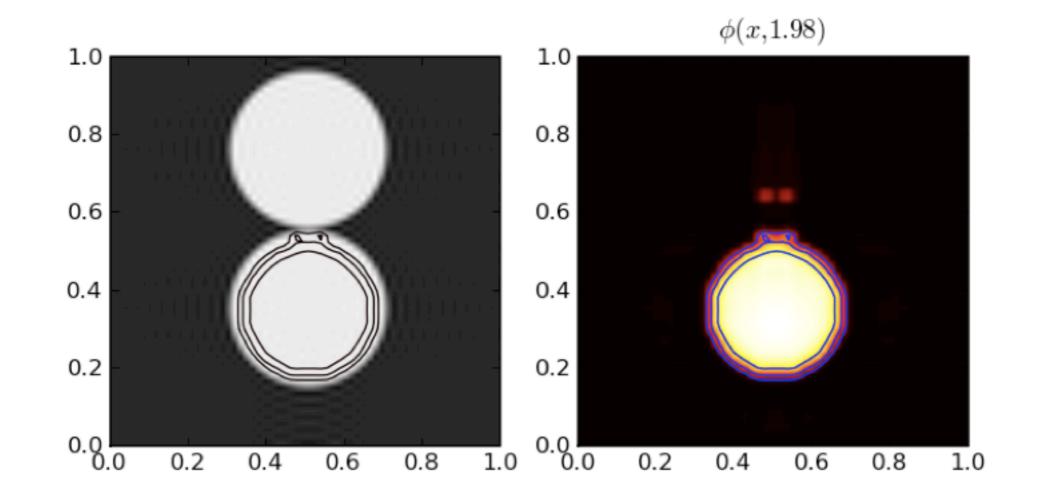


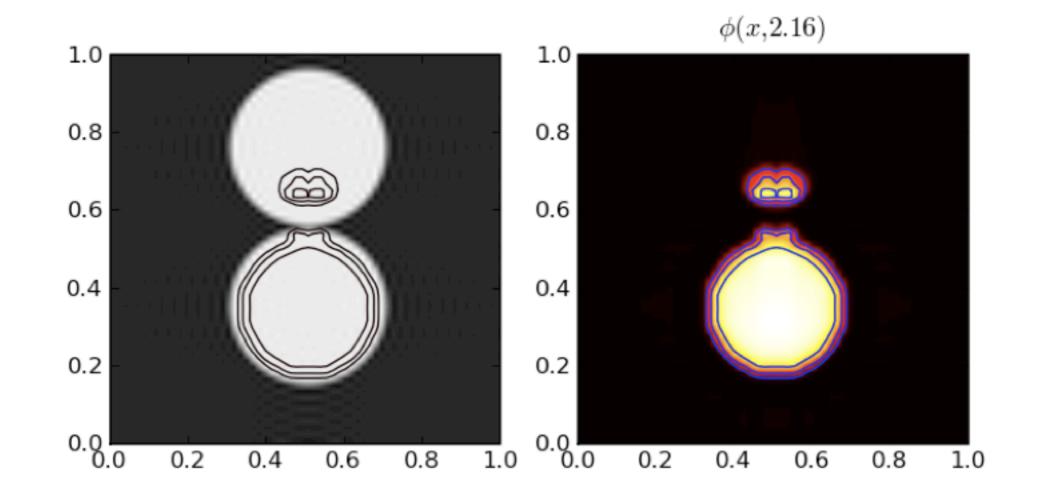


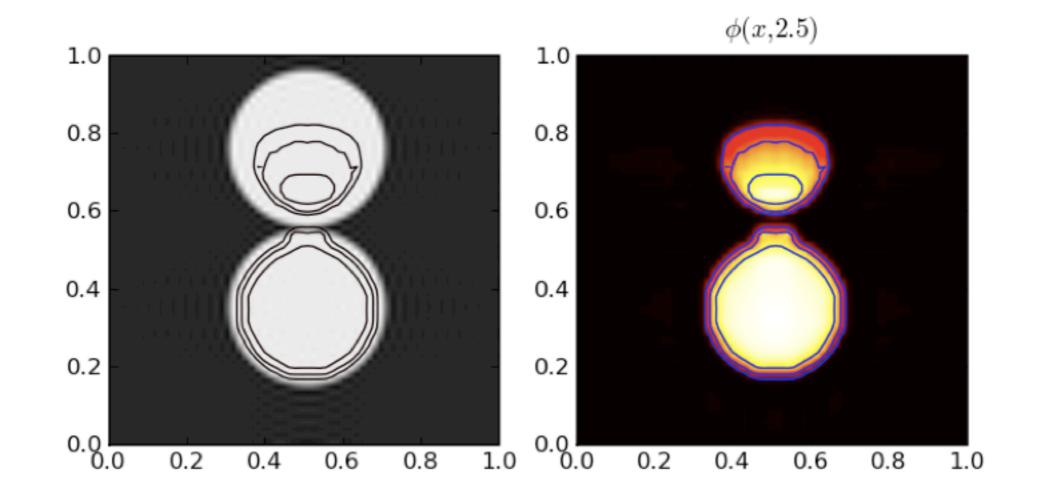












2 dimensions is not 1 dimension "done twice"

Parameterize images

$$\boldsymbol{\rho}(x) = \left[\sum_{j=0}^{M-1} \boldsymbol{\rho}_j \mathbf{1}_{\gamma_j}(x)\right] + \boldsymbol{\rho}_{\text{tex}}(x)$$

Parametric Model

* Segmentation problem:

Find: $M, \gamma_j(t)$

***** Reconstruction problem:

Find: $M, \gamma_j(t), \rho_j, \rho_{\text{tex}}(x)$

Singular Support

* Edges are the singular support of the function:

$$\forall \lambda > 0, \sup_{|\vec{k}| \ge k_r} \left| \int e^{i\vec{k} \cdot x} \boldsymbol{\rho}(x) \chi((x - x_0)\lambda) dx \right| = O(k_r^{-3/2})$$

Singular support is set of points

$$\vec{x}_0 = \gamma_j(t)$$

Wavefront Set

Singular support extends to wavefront in higher dimensions

$$\forall \lambda > 0, \sup_{r \ge k_r} \left| \int e^{irk_0 \cdot x} \boldsymbol{\rho}(x) \chi((x - x_0)\lambda) dx \right| = O(k_r^{-3/2})$$

* Wavefront is set of surfels

$$(\vec{x}_0, \vec{k}_0) = (\gamma_j(t), \pm N_j(t))$$

2D is not 1D squared

singular support $\subset \mathbb{R}^N$ wavefront $\subset \mathbb{R}^N \times (\mathbb{S}^{N-1}/\{\pm 1\})$

 P_x wavefront = singular support

2D is not 1D squared

$\mathbb{R}^1 \times \mathbb{R}^1 \neq \mathbb{R}^2 \times (\mathbb{S}^1 / \{\pm 1\})$

Wavefront Detection

* What does the Fourier transform of an edge look like?

* Calculate with Green's Theorem

$$\widehat{1_{\gamma_j}}(\vec{k}) = \int \int_{\Omega_j} e^{i\vec{k}\cdot x} dx_1 dx_2 = \int \int_{\Omega_j} \partial_{x_1} F_2(\vec{k}, x) - \partial_{x_2} F_1(\vec{k}, x) dx_1 dx_2$$
$$= \int_{\mathbb{S}^1} F(\vec{k}, \gamma_j(t)) \cdot \frac{d\gamma_j(t)}{dt} dt = \frac{1}{i|\vec{k}|^2} \int_{\mathbb{S}^1} e^{i\vec{k}\cdot\gamma_j(t)} \vec{k}^{\perp} \cdot \gamma'_j(t) dt$$

(HAT TIP: EUGENE SORETS)

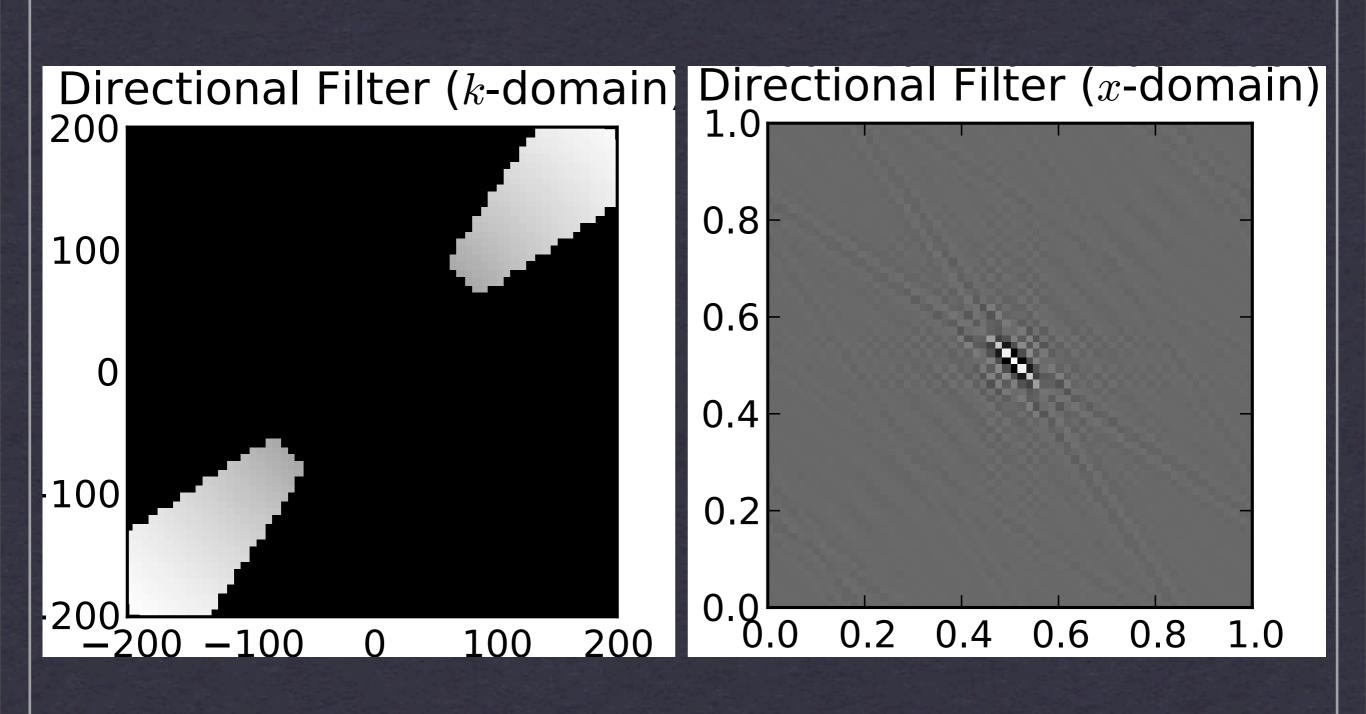
* Phase stationary when $\vec{k} \cdot \gamma'(t) = 0$

$$\sum_{j=0}^{M-1} \rho_j \widehat{1_{\gamma_j}}(\vec{k}) = \sum_{j=0}^{M-1} \rho_j \left[\frac{e^{i\vec{k}\cdot\gamma(t_j(\vec{k}))}}{\left|\vec{k}\right|^{3/2}} \frac{\sqrt{\pi}}{\sqrt{\kappa_j(t_j(\vec{k}))}} + \frac{e^{i\vec{k}\cdot\gamma(t_j(-k))}}{\left|\vec{k}\right|^{3/2}} \frac{\sqrt{\pi}}{\sqrt{\kappa_j(t_j(-\vec{k}))}} \right] + O(k_r^{5/2}) \quad (2.2)$$

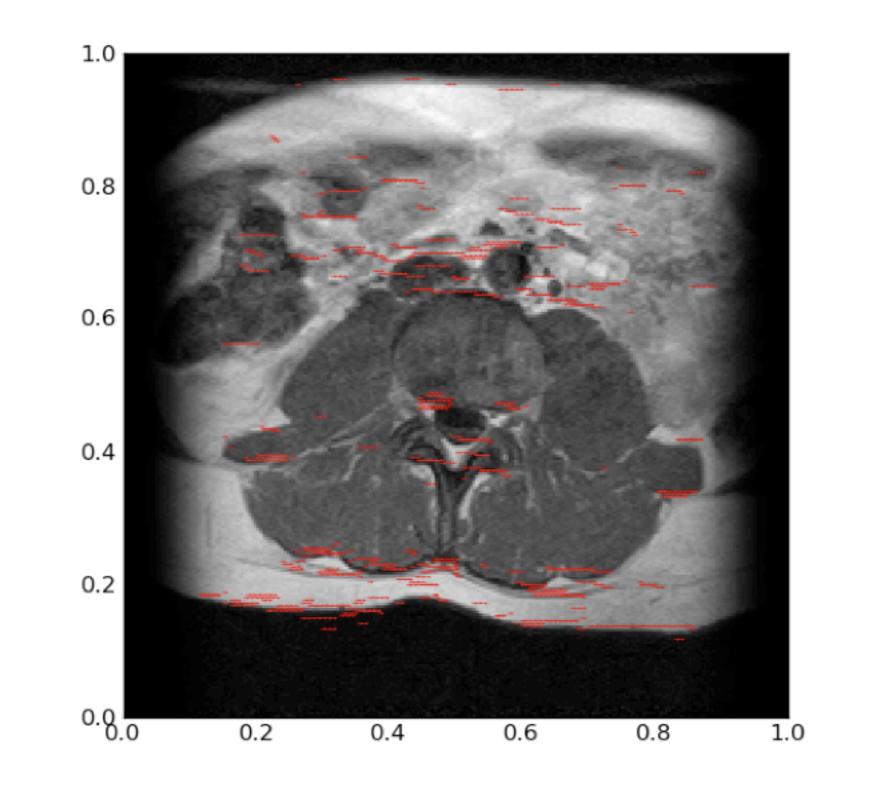
 $t_j(\vec{k})$ satisfies $\vec{k} \cdot \gamma'(t_j(\vec{k})) = 0$

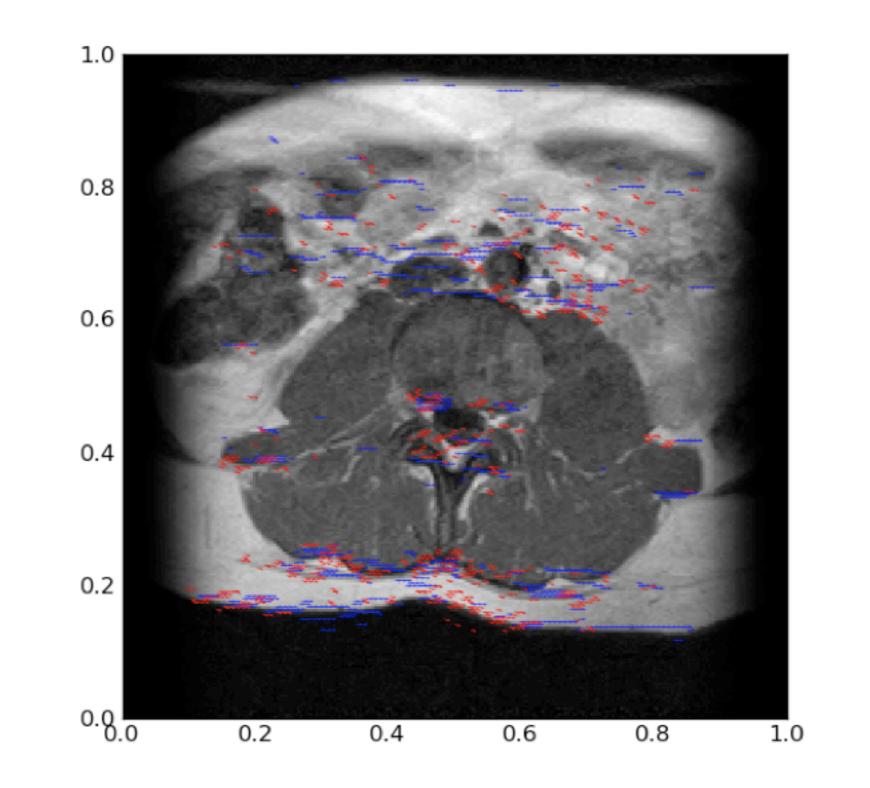
* Ray $\vec{k} = k_r \vec{k}_{\theta}$ encodes location of edges with normals pointing in direction \vec{k}_{θ}

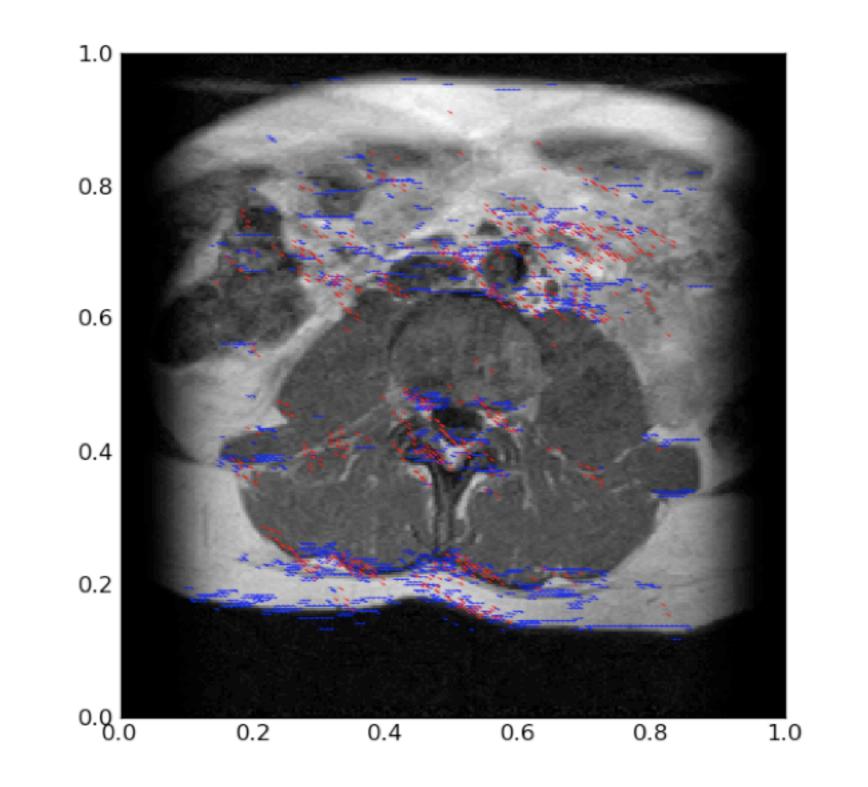
* Localizing on this region yields surflls in the wavefront pointing in direction \vec{k}_{θ}

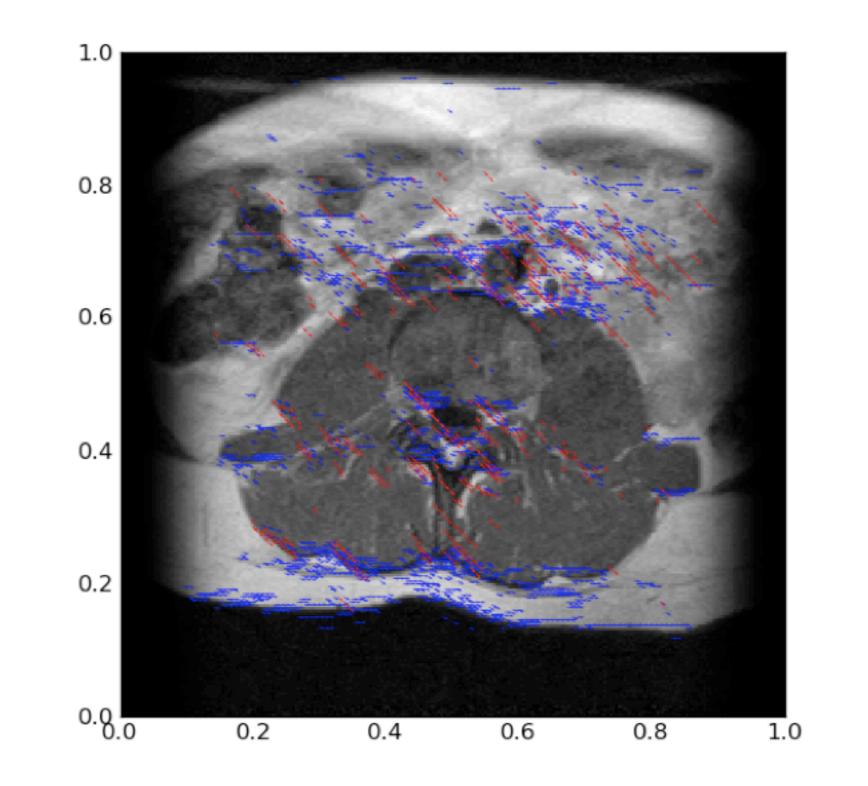


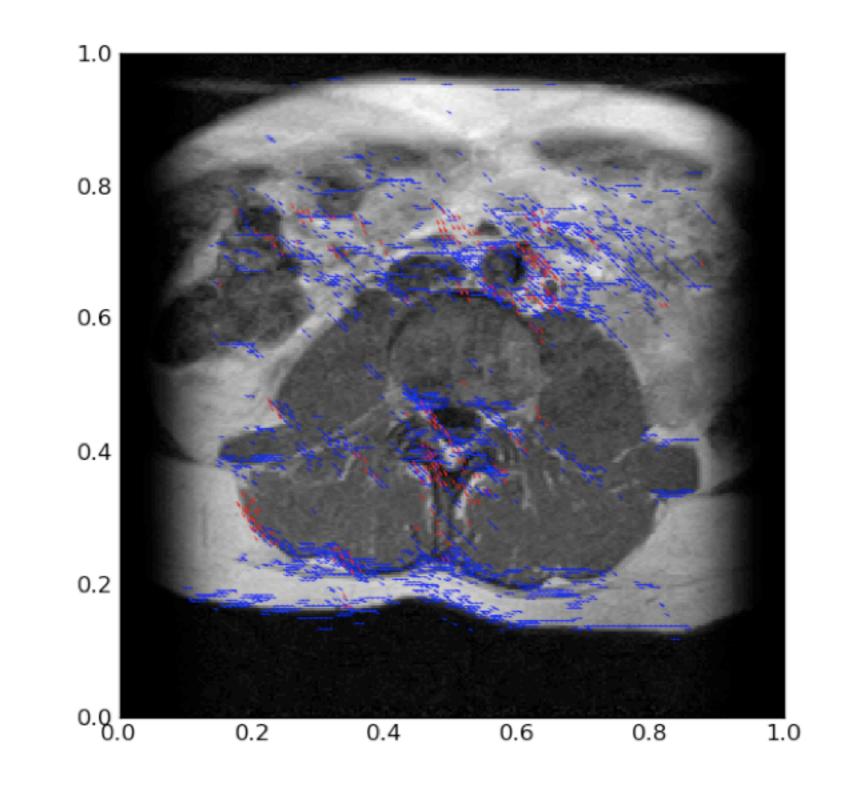
DIRECTIONAL FILTERS

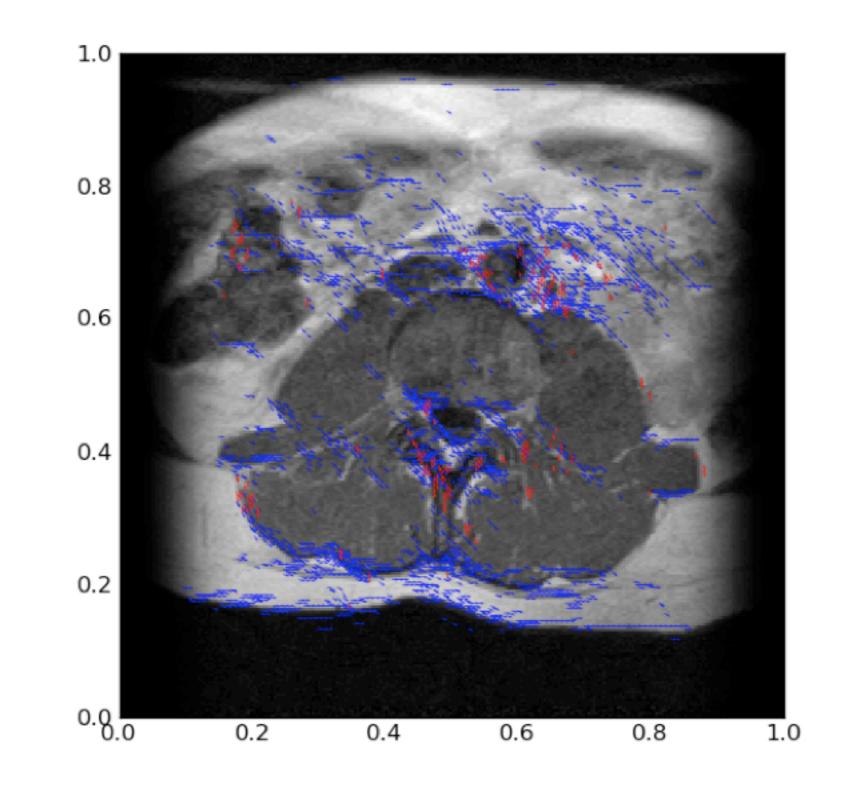


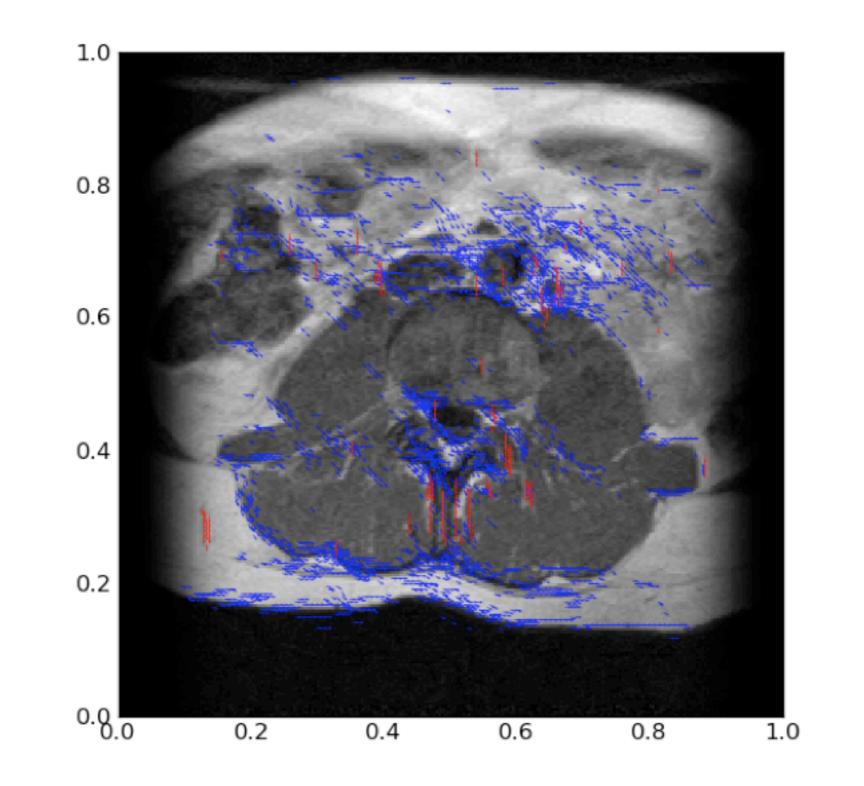


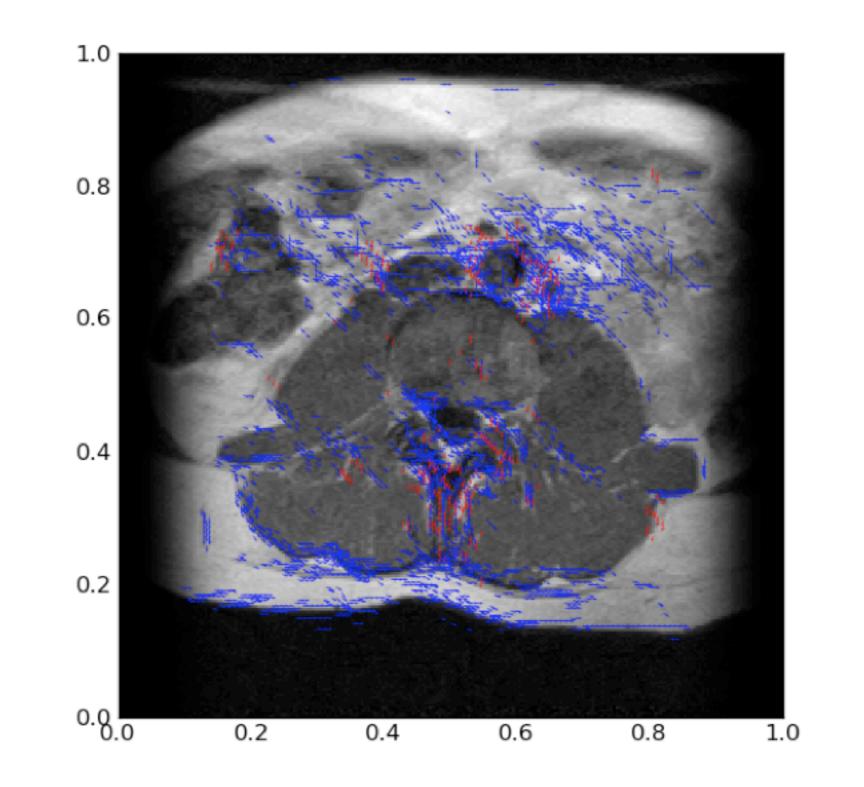


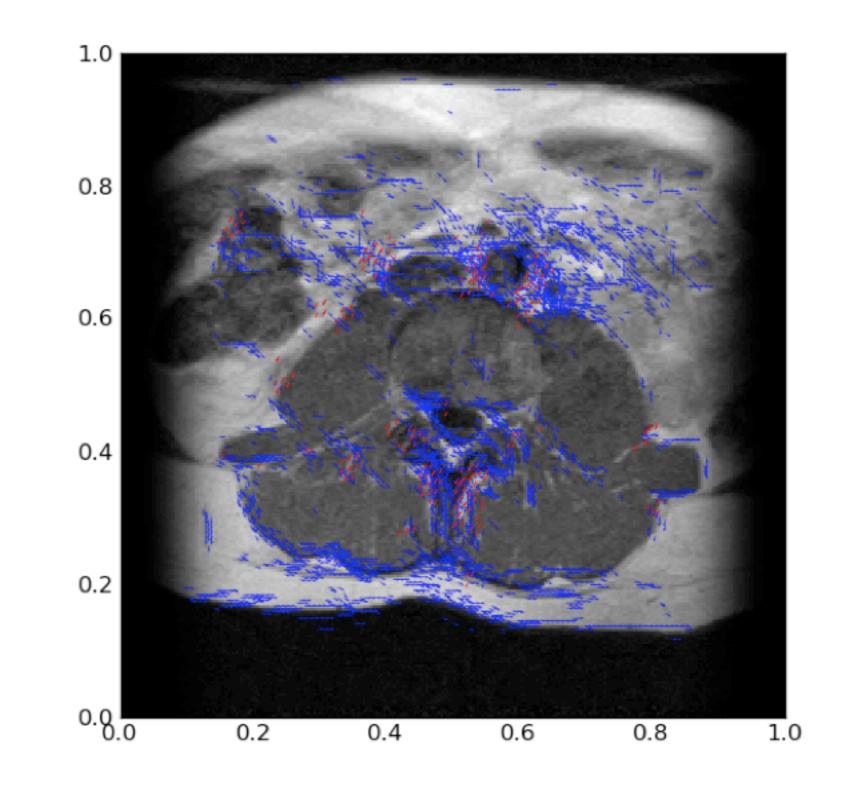


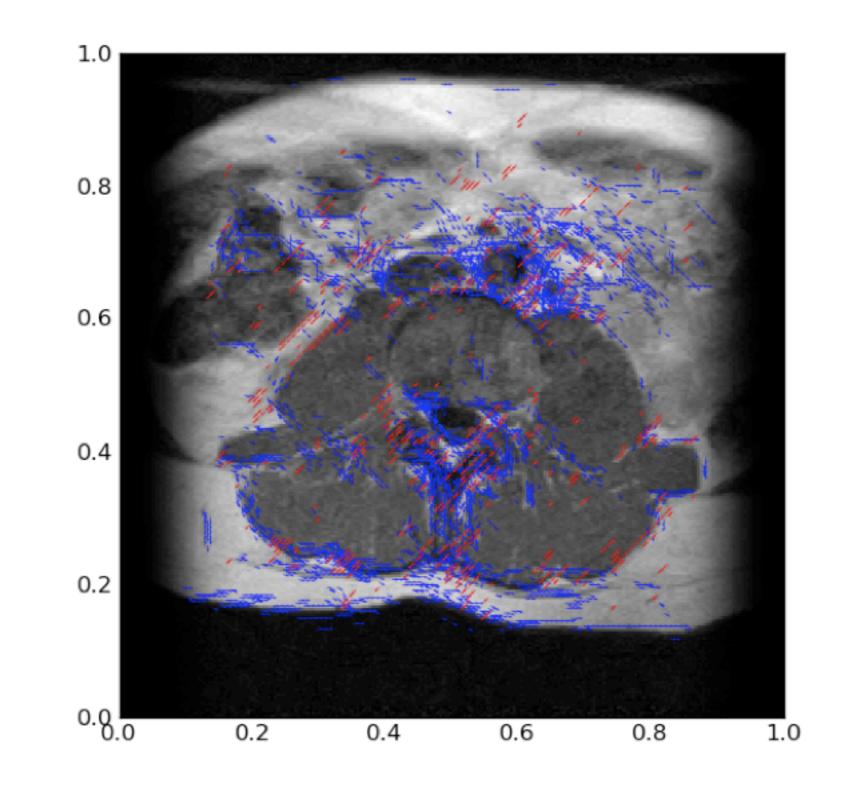


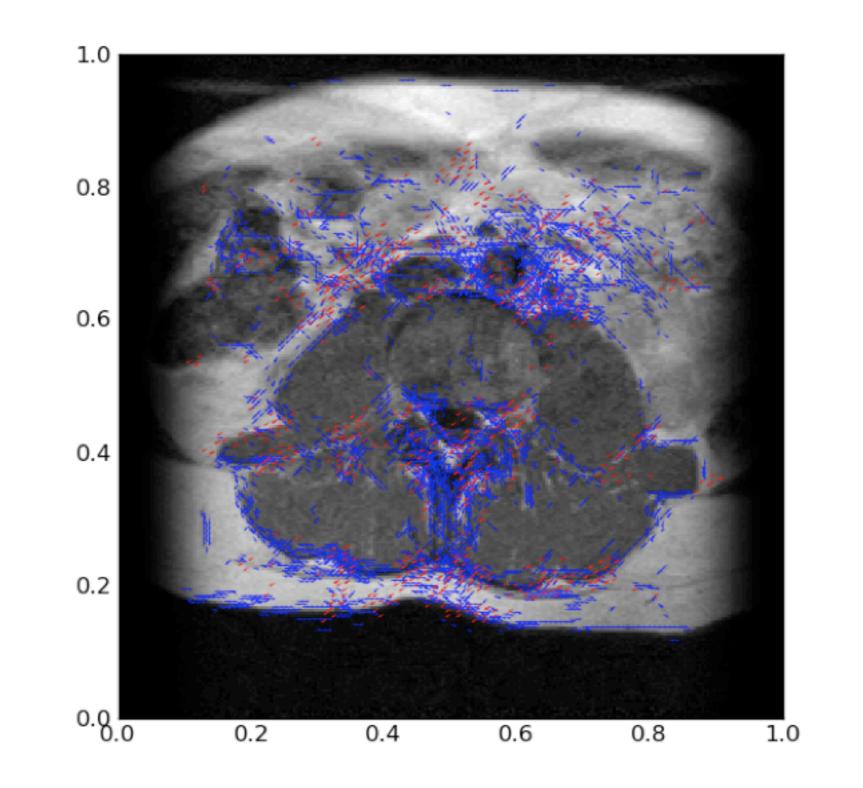






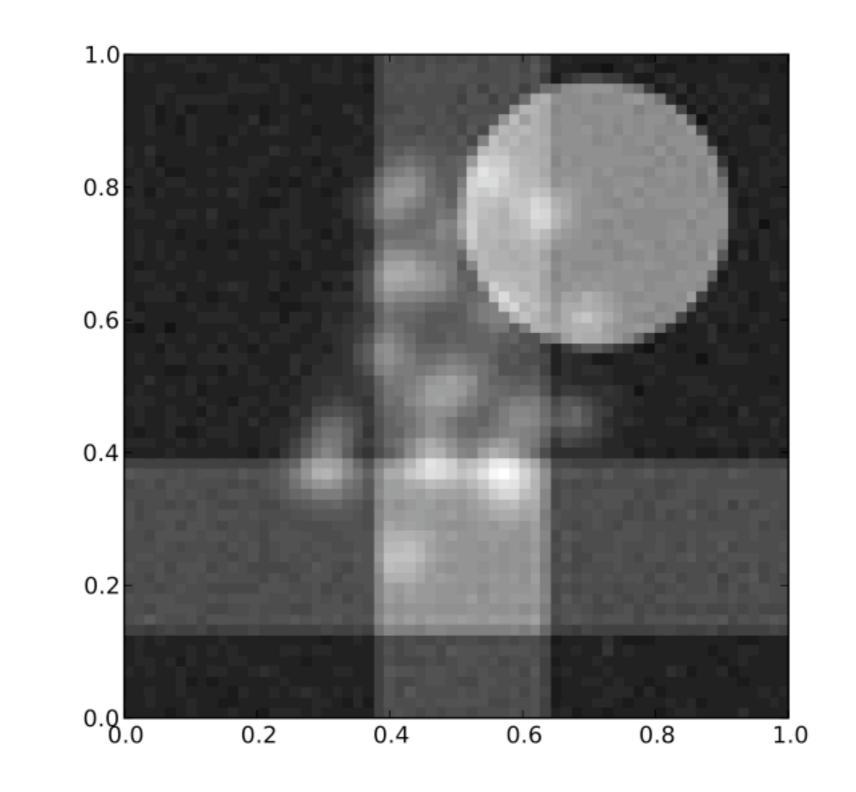




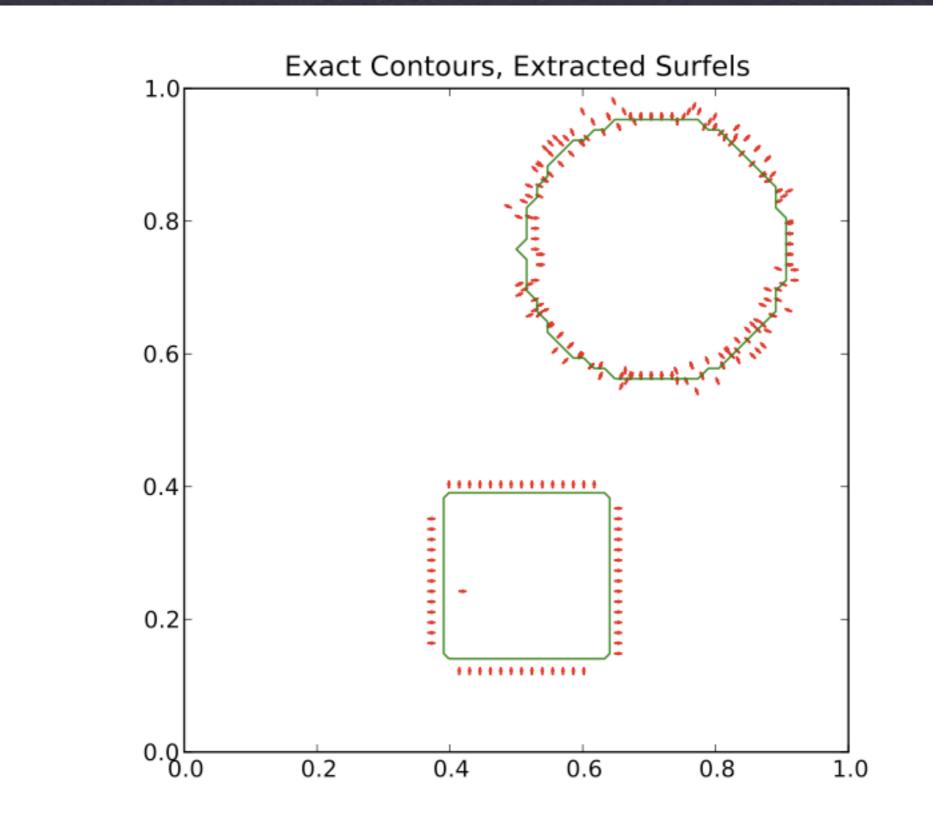


0.25 0.20 0.15 0.10 0.35 0.45 0.50 0.55 0.40 0.60

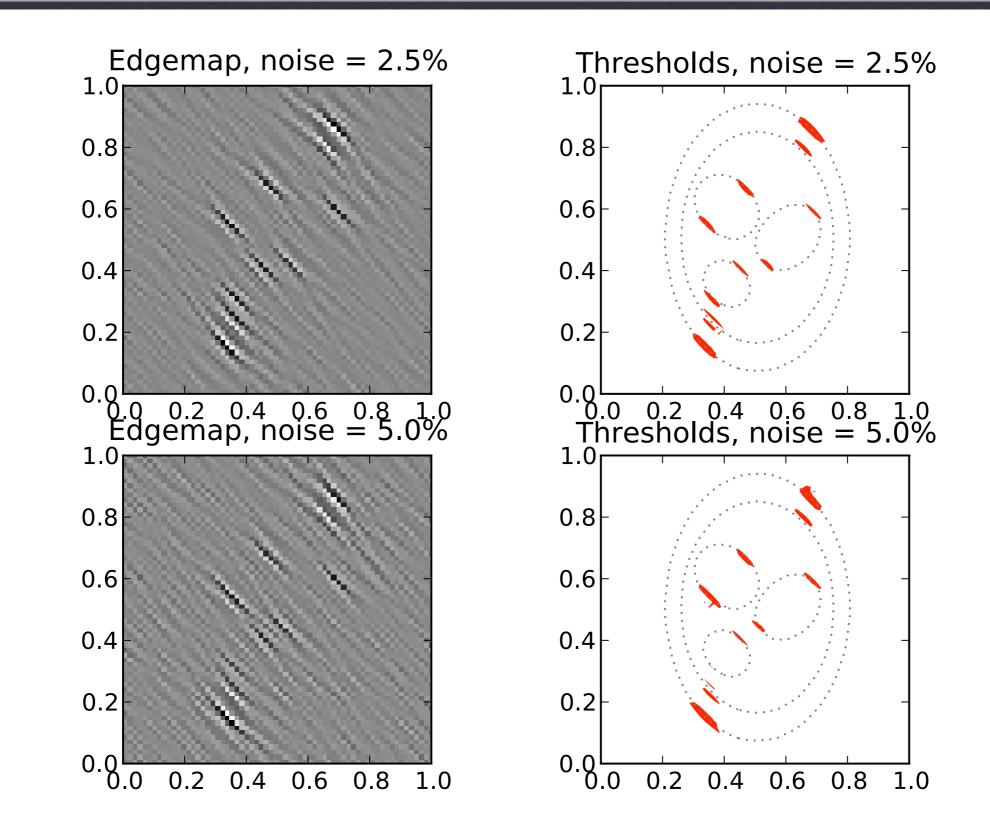
SKIN OF LOWER BACK



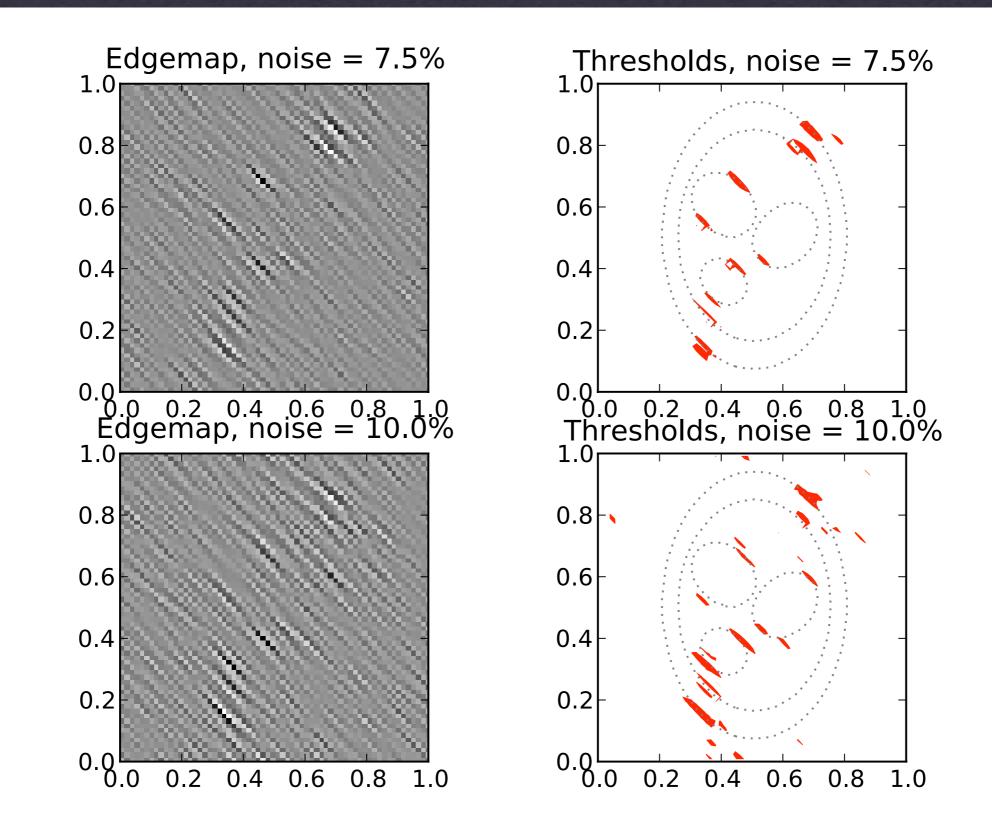
ZERO CURVATURE EXAMPLE SPURIOUS EDGES ARE NOT DETECTED



ZERO CURVATURE EXAMPLE SPURIOUS EDGES ARE NOT DETECTED



NOISE SENSITIVITY



NOISE SENSITIVITY

Analysis

Assumptions

- * MRI measures Fourier transform of density
- # Image piecewise constant plus smooth part
- * The image boundaries are smooth
- * Curvature bounded above and below
- * The boundaries are separated from each other
- * Minimum edge contrast

NOT SATISFIED IN PRACTICE

How it works

$$\frac{e^{ik \cdot \gamma_j(t_j(\vec{k}))}}{|k|^{3/2}} \frac{\sqrt{\pi}}{\sqrt{\kappa_j(t_j(\vec{k}))}} + O(|k|^{-5/2})$$

Start with asymptotic expansion

How it works

$$\frac{e^{ik\cdot\gamma_j(t_j(\vec{k}))}}{|k|^{3/2}} \frac{\sqrt{\pi}}{\sqrt{\kappa_j(t_j(\vec{k}))}} \mathcal{V}(k_\theta)|k|^{1/2} \mathcal{W}(|k|)$$

* Drop higher order terms and apply directional filter

How it works
$$\int_{-\alpha}^{\alpha} \int_{0}^{\infty} \frac{e^{ik \cdot \gamma_{j}(t_{j}(k_{\theta}))}e^{-ik \cdot x}}{k_{r}^{3/2}} \frac{\sqrt{\pi}}{\sqrt{\kappa_{j}(t_{j}(k_{\theta}))}} \mathcal{V}(k_{\theta}k_{r}^{3/2}\mathcal{W}(k_{r}dk_{r}dk_{\theta}))$$

* Then inverse Fourier Transform

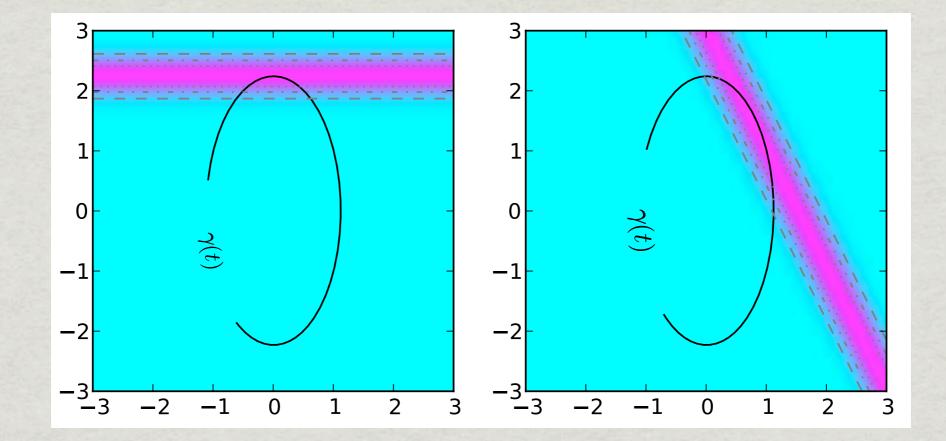
$$\int_{t_j(-\alpha)}^{t_j(\alpha)} \int_0^\infty \frac{e^{ik \cdot (\gamma_j(t) - x)}}{k_r^{3/2}} \frac{\sqrt{\pi}}{\sqrt{\kappa_j(t)}} \mathcal{V}(k_\theta(t)k_r^{3/2}\mathcal{W}(k_r dk_r dt)$$

* Change variables

How it works
$$\int_{t_{j}(-\alpha)}^{t_{j}(\alpha)} e^{ik \cdot \gamma_{j}(t)} \sqrt{\pi \kappa_{j}(t)} \mathcal{V}(k_{\theta}(t) k_{r}^{3/2} \check{\mathcal{W}}(N_{j}(t) \cdot [\gamma_{j}(t) - x]) dk_{r} dt$$

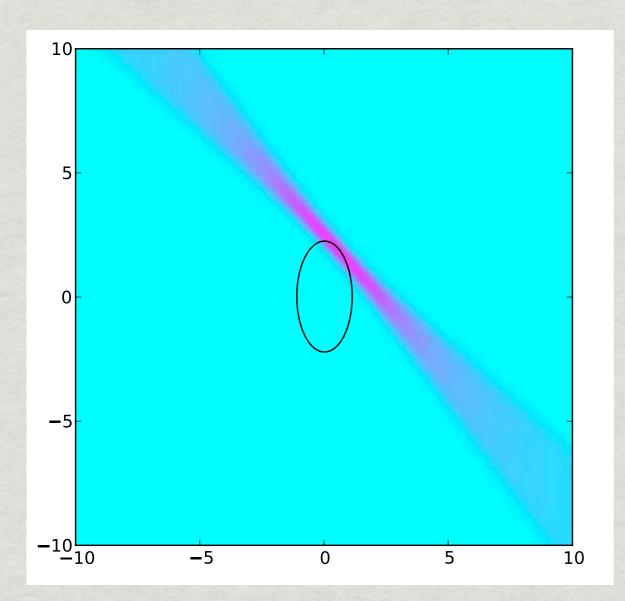
* And evaluate inner integral

Proof of Correctness



SCHEMATIC PLOT OF THE INTEGRAND

Proof of Correctness



* Fast decay in normal direction

* Polynomial decay in tangential direction

*** Parabolic scaling:** k domain: width = $O(\sqrt{\text{length}})$ x domain: width = $O(\text{length}^2)$

Theorem

* A directional filter will extract at least one surfel near the point where the tangent of an edge equals the direction of the filter.

* It will not extract surfels far from the edge.

* The theorem only applies to unrealistic parameter choices. Algorithm still works on phantoms, however.

Segmentation with Surfels

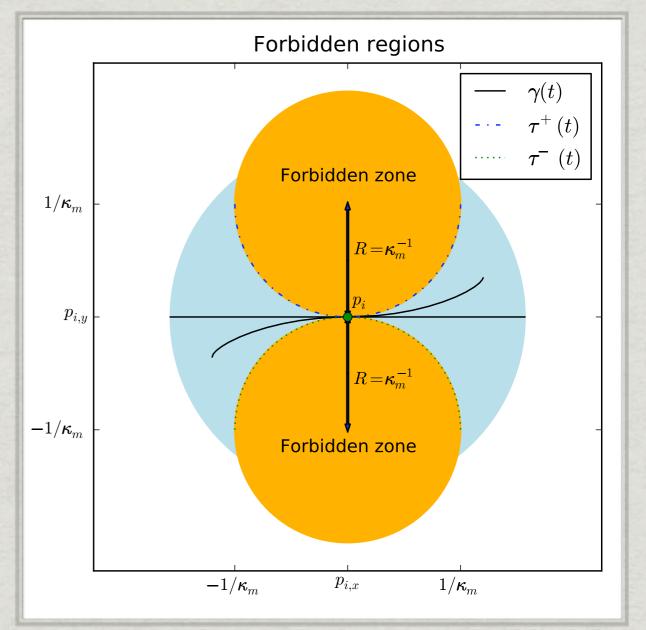
Combinatorial Reconstruction

* Goal: combinatorial reconstruction of curves from scattered surfels

* How can tangential information help?

Combinatorial Reconstruction

* Points can only be connected in tangential direction.



Reconstruction Algorithm:

- * Connect all points close to each other, but not within forbidden region.
- * Prune graph, connecting only nearest tangential neighbors within the graph.
- * Result is polygon with same topology as original curve.
- * Then smooth polygon.

Reconstruction Algorithm

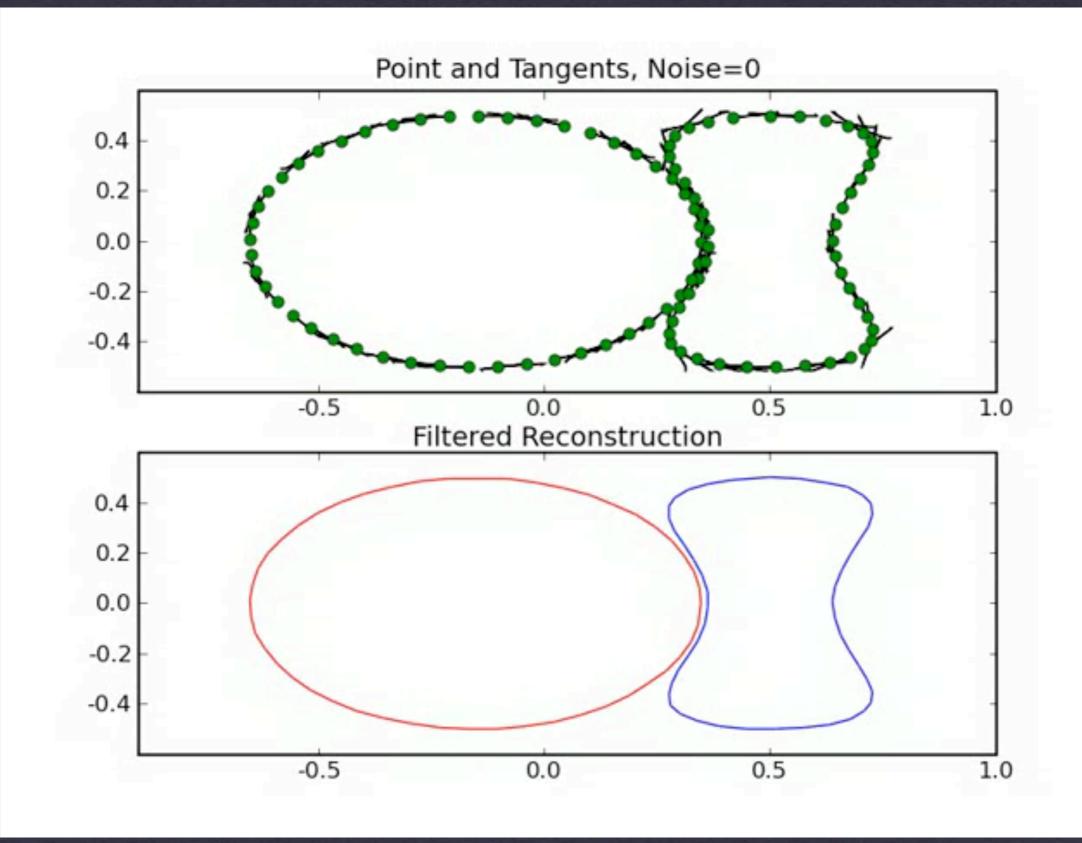
* Proven to work.

sample spacing = $O(\sqrt{\text{curve separation}})$

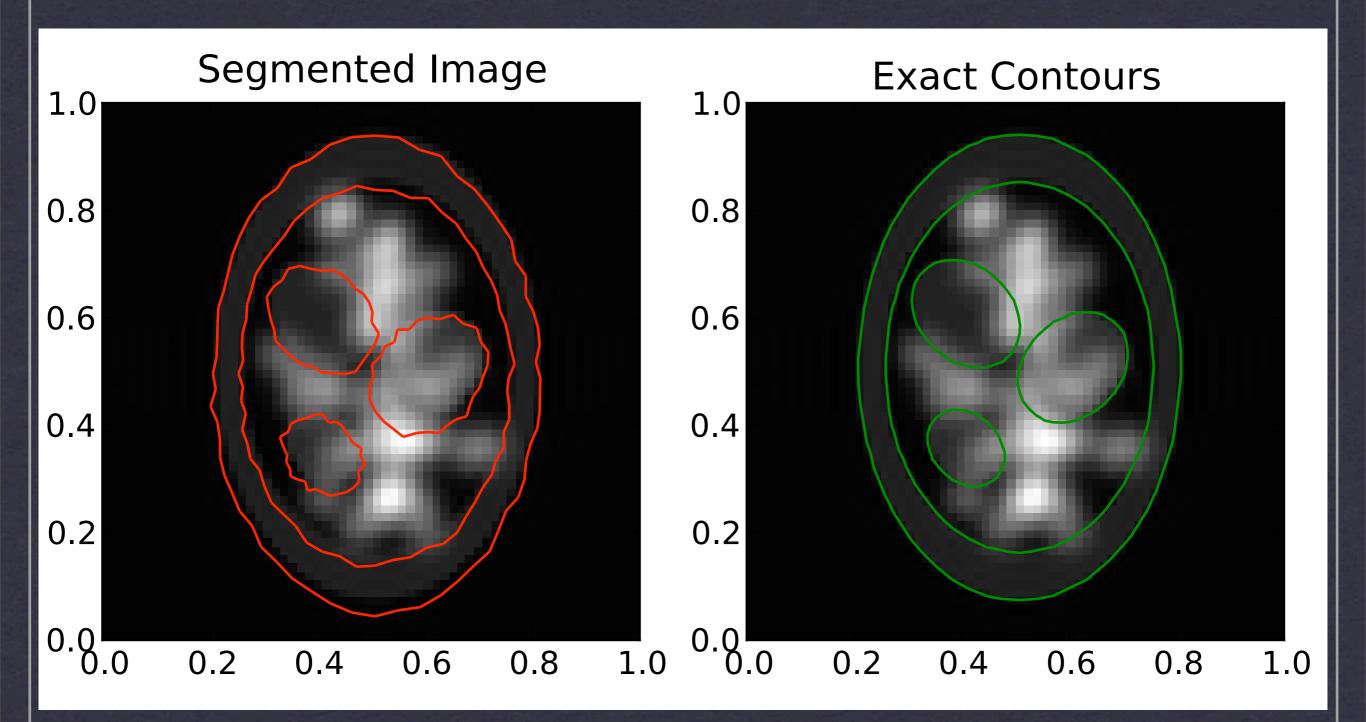
* Proof is an exercise in elementary calculus.

* Can filter uncorrelated noise via geometric constraints.

CURVE RECONSTRUCTION FROM POINTS AND TANGENTS. L. GREENGARD AND C. STUCCHIO ARXIV.ORG/ABS/0903.1817



FILTERING UNCORRELATED NOISE



SEGMENTED PHANTOM

OVERSIMPLIFIED GEOMETRY

Surfel Segmentation

- * Can prove segmentation algorithm correct by plugging output of wavefront theorem into input of curve reconstruction theorem.
- * Combinatorial curve reconstruction only works for simplified geometry.

Open problems

* Build a level-set based segmentation algorithm that uses surfel data.

* Clean up the surfel data (Bayesian tricks)

Reconstruction

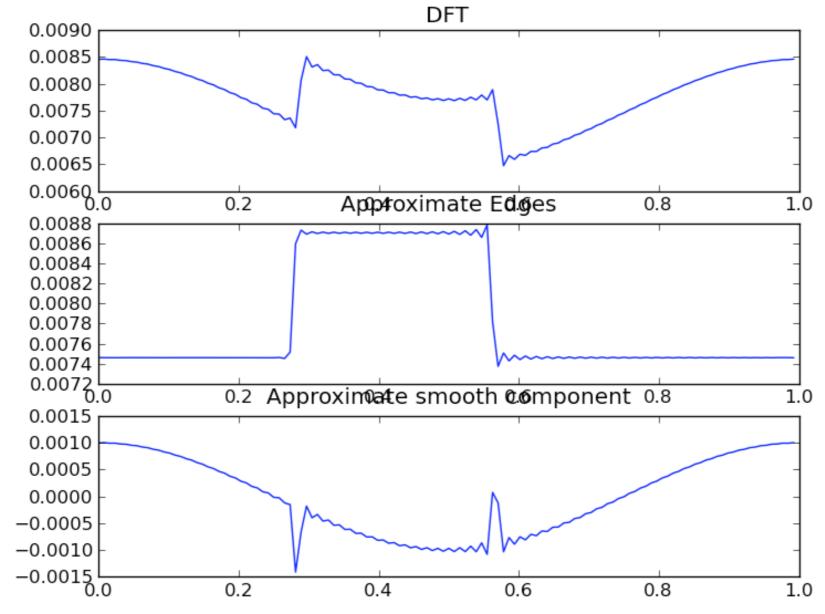
Reconstruction

* Assume segmentation problem is approximately solved.

* Obvious idea: compute Fourier transform of discontinuities, subtract off, leaving only smooth part of function.

* Then manually draw discontinuities back.

Fail



* Best approximation to low frequency data:

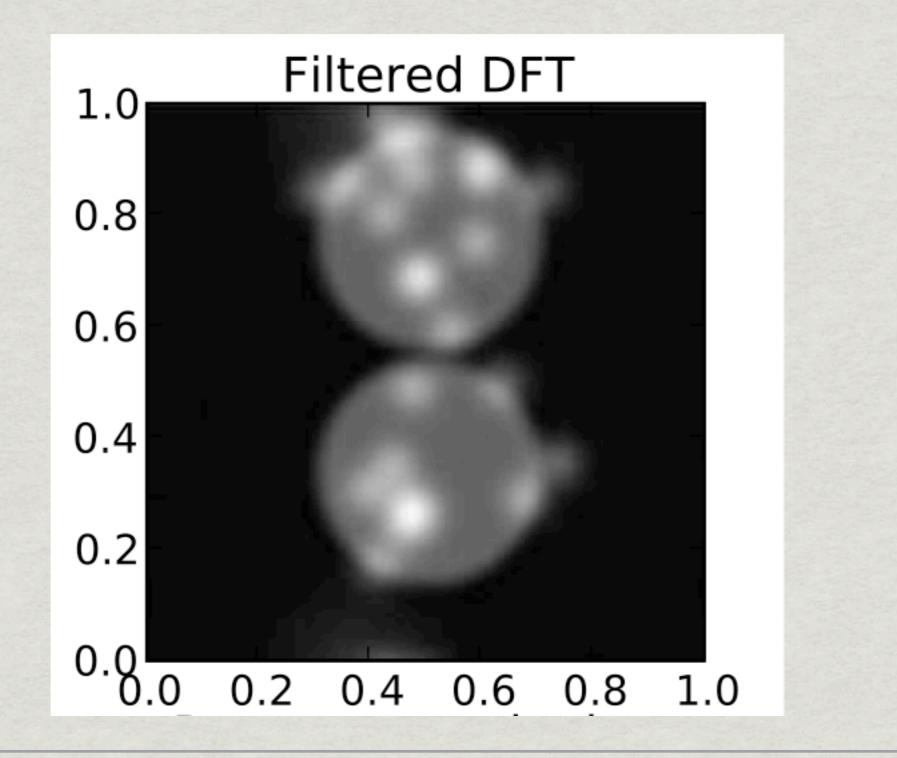
 $\hat{\rho}_{\rm meas}(k)$

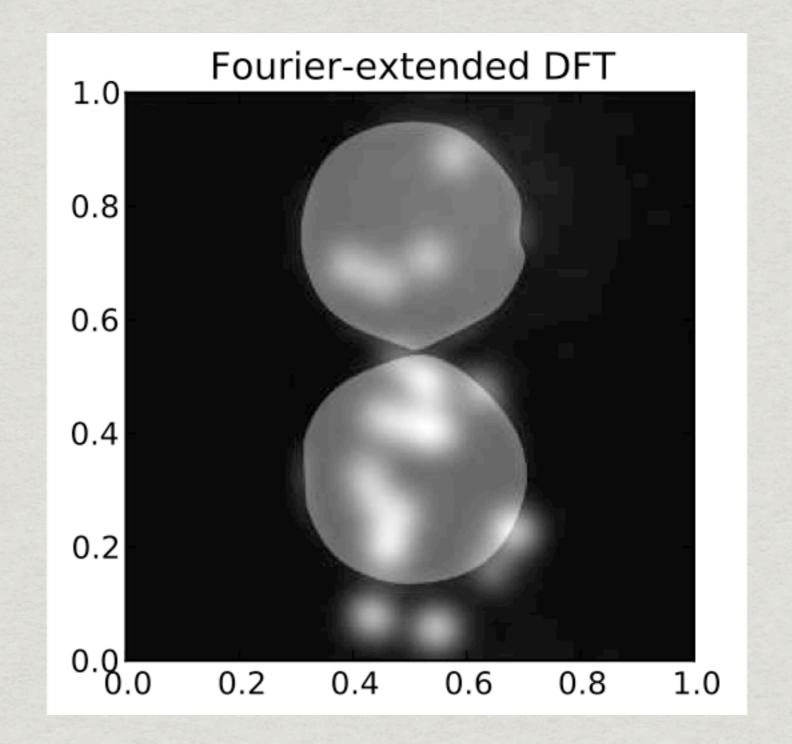
* High frequency data missing, but we can approximate:

 $\sum_{j=1}^{M-1} \rho_j \widehat{1_{\gamma_j}}(k) = \sum_{j=1}^{M-1} \rho_j \frac{1}{i|k|^2} \int_{S^1} e^{ik \cdot \gamma_j(t)} k^{\perp} \cdot \gamma'_j(t) dt$

* Smooth Transition between them to avoid artifacts:

 $\hat{\rho}_{\text{reconstructed}}(k) = \text{LPF}(k)\hat{\rho}_{\text{meas}}(k)$ $+ \text{HPF}(k)\sum_{j=1}^{M-1}\rho_j\widehat{1_{\gamma_j}}(k)$





Conclusion

- * The wavefront of an image has more information than it's singular support
- * Surfels can be extracted directly from raw data
- * Effectively segments and reconstructs phantoms
- Still needed: good geometric algorithms for surfel reconstruction