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Magnetic Resonance 
Imaging

Excellent soft tissue 
contrast.

No radiation.

2003 Nobel Prize 
(Lauterberger, Mansfield). 
Damadian maybe deserves 
credit too?



MY LATERAL SPINE



Objectives and Challenges

Show radiologist 
accurate pictures

Quantify anatomical 
features

GOALS

Noise

Artifacts

Ambiguity

CHALLENGES



Accurate Pictures



Segment 
Anatomical 
Features
Separate into distinct 
regions



Identification
Label the segmented 
regions

SKULL

STARBOARD OVAL BRAIN PART

PORT OVAL BRAIN PART

GREAT BIG BRAIN TUMOUR



Diagnosis
Draw conclusion from image 
data

SKULL

STARBOARD OVAL BRAIN PART

PORT OVAL BRAIN PART

GREAT BIG BRAIN TUMOUR

PATIENT IS SICK



How an MRI works



How an MRI works

Big Magnet: 1-2 Tesla

Nucleus of atoms has spin

Level Splitting: magnetic field breaks spin 
symmetry



How an MRI Works

Excited state decays to ground, emits radiation.

Measuring the radiation gives information on 
object.

SPIN UP (EXCITED STATE)

SPIN DOWN (GROUND STATE)



How an MRI works
Bloch Equation (macroscopic model):

M(t) is magnetization, B(t) the magnetic field.

M0(x) = Cρ(x)
M(x, 0) = M0(x)

∂t
"M(x, t) = γ "M × "B(x, t)−

P1,2
"M

T2
− P3( "M(x, t)−M0(x))

T1



HOW AN MRI WORKS
COORDINATE SYSTEM

Z Y

X



How an MRI works
Hit system with weak RF pulse (excitation):

Rotates spins from z-direction into x-y plane

!B(x, t) = [0, f(t)w(xz), 0]

!M(x, t)× !B(x, t) = [0, 0, M0(x)]× [0, f(t)w(x3), 0]
= [−M0(x)f(t)w(x3), 0, 0]



How an MRI works
Switch off excitation pulse, use probe field:

X-Y components decoupled from Z component

Substitution: M(t) = !Mx(t) + i !My(t)

!B(t) = [B0 + !G(t) · [x1, x2, 0]T ]!z



How an MRI works
Bloch Equation:

M(x, t0) = ρ(x)w(xz)h(t0)

∂tM(x, t) =
[
−iγ(B0 + G(t) · x)− 1

T2

]
M(x, t)



How an MRI works
Use RF receiver coils measure emission in the 
sample.

S(t) ∼
∫

M(x, t)dx + noise



How an MRI works
Solution:

Simplify:

M(x, t) = ρ(x)w(x3)e−iγB0te−iγ(
R t

t0
G(t′)dt′)·xe−t/T2

!k(t) = γ

∫ t

t0

G(t′)dt′

M(x, t) !→ eiγB0tM(x, t)



How an MRI works
Solution:

Signal:

M(x, t) = ρ(x)w(x3)e−ik(t)·xe−t/T2

S(t) ∼ e−t/T2

∫
ρ(x)w(x3)e−ik(t)·xdx + noise



How an MRI works
Signal:

An MRI measures the Continuous Fourier 
Transform of the density. 

S(t) ∼ e−t/T2 ρ̂(k(t)) + noise



Image Reconstruction
ACCURATE PICTURES



Fourier Inversion
Hugely ill posed problem.

Then:

∃f(x) "= 0, ̂[ρ + f ](k1,...,N ) = ρ̂(k1,...,N )

Given ρ̂(k1), . . . , ρ̂(kN ), find ρ(x)



Fourier Inversion
Fourier’s Theorem. Assume Cartesian sampling. 

Best approximation to density in                  norm

ρ(x) ≈
∑

!n

ρ̂(2π#n)e−i2π!nx

L2([0, 1]2)



Fourier Inversion
Fourier Transform not convergent pointwise

Regularization discards information

ρ(x) ≈
∑

!n

ρ̂(2π#n)w(#n)e−i2π!nx



FOURIER INVERSION



OTHER ARTIFACTS
SMALL CURVATURE POSES PROBLEMS



Current Solution
Reconstruct image using regularized discrete 
Fourier transform:

Clean up regularized image in x-domain.

Segment/identify based on cleaned up image.

ρ(x) ≈
∑

!n

ρ̂(2π#n)w(#n)e−i2π!nx



Segmentation
OUTLINING THE IMPORTANT FEATURES



Segmentation

Segmentation by anatomy/composition - outline 
the cancerous part

Segmentation by perception - draw the same 
outlines as a human

Image-space segmentation - separate based on 
image boundaries

GOALS



Image boundaries

Image boundaries are places where image 
composition changes sharply.

In medical images, this happens at discontinuities 
of image. 

Not true in other modalities.



Discontinuities

Want to find discontinuities of an image.

Image domain methods fail due to artifacts.

Want to find discontinuities from raw MRI data, i.e. 
from samples of Fourier transform of image.



Discontinuities
Simple model: a 1-d function with a discontinuity:

If we localize on high frequencies, we can extract 
edges.

∫
eikxf(x)dx = eikx0

f(x+
0 )− f(x−0 )

ik
+ O(k−2)



1D Edge 
Detection
Laplace Filters, Gradient 
Filters, Concentration 
Kernels, etc.

STATE OF THE ART:
CONCENTRATION KERNELS, C.F. TADMOR/GELB/ETC



2D Edge Detectors
Tensor Products

Radial Variables

DFT−1[h(!k)ρ̂(!k)]

R2 = R⊗ R



RESULT OF HIGH FREQUENCY FILTERS
EDGE DETECTOR RESOLUTION IS HALF THAT OF IMAGE
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RESULT OF HIGH FREQUENCY FILTERS
EDGE DETECTOR RESOLUTION IS HALF THAT OF IMAGE



RESULT OF HIGH FREQUENCY FILTERS
EDGE DETECTOR RESOLUTION IS HALF THAT OF IMAGE



Problems

Noisy

Does not separate 
regions

Not obvious how to “fill 
in the holes”



Problems

Noisy

Does not separate 
regions

Not obvious how to “fill 
in the holes”



Problems

Noisy

Does not separate 
regions

Not obvious how to “fill 
in the holes”



Boundary Reconstruction

Combinatorial methods

Active Contours/Snakes/Level Sets

Bayesian Methods
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Combinatorial Methods
Delaunay-methods: find the 
Crust of a point-set.

Start with Delaunay graph.

If a disk touches both ends of an 
edge in the Delaunay graph also 
touches a third vertex, then 
delete the edge.

(AMENTA, BERN, DEY, KUMAR, EPPSTEIN)



Combinatorial Methods
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FIG. 1. A point set and its crust.

We shall say that a disk B touches anobject x if the intersection

B ∩ x is a subset of the boundary of B (that is, we mean that

B “just touches” x). We say that B is empty of points in x if its

interior contains no points of x . The graph definitions are both

related to the Voronoi diagram and Delaunay triangulation of S

(for more on the Voronoi diagram and Delaunay triangulation

see any of the standard computational geometry texts, e.g., [2],

[3], or [4]), (see Fig. 2), and we shall refer to the following

well-known property:

EMPTY CIRCLE PROPERTY. Two points in S determine an edge

of theDelaunay triangulation if there is a disk B, empty of points

in S, which touches them both.

We now define the graphs we will use for reconstruction.

DEFINITION. Let S be a finite set of points in the plane, and

let V be the vertices of the Voronoi diagram of S. Let S′ be the
union S ∪ V , and consider the Delaunay triangulation of S′. An
edge of the Delaunay triangulation of S′ belongs to the crust of
S if both of its endpoints belong to S.

An alternate definition can be given using the empty circle

property:

FIG. 2. A Voronoi diagram of a point set S and the Delaunay triangulation of S ∪ V , with the crust highlighted.

ALTERNATE DEFINITION. Let S be a finite set of points in the

plane, and let V be the vertices of the Voronoi diagram of S. An

edge between points s1, s2 ∈ S belongs to the crust of S if there

is a disk, empty of points in S ∪ V , touching s1 and s2.

The intuition behind the definition of the crust is that the

vertices V of the Voronoi diagram of S approximate the medial

axis of F , and the Voronoi disks of S′ = S ∪ V approximate

empty circles between F and its medial axis. Note that if an edge

between two points of S belongs to the Delaunay triangulation

of S′ it certainly belongs to the Delaunay triangulation of S, and
hence the crust of S is a subset of theDelaunay triangulation of S.

We now review the definition of the β-skeleton. Let β ≥ 1 be

a constant. An edge is present in the β-skeleton if the following

forbidden region is empty of points of S.

DEFINITION. Let s1, s2 be a pair of points in the plane, at

distance d(s1, s2). The forbidden region of s1, s2 is the union of

the two disks of radius β d(s1, s2)/2 touching s1 and s2.

Examples of the forbidden region for different values of β are

shown in Fig. 3. Reasonable definitions for β ≤ 1 can also be

made; see [1].

WIN
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FIG. 5. LFS(p) is the distance d(p,m), not the perpendicular distance

d(p,m′) to the center of the largest empty tangent ball at p.

Armedwith this definition of local feature size, we can clarify

the intuition that a small enough disk intersects a curve in a

topological 1-disk. The following are corollaries of Lemma 1.

COROLLARY 3. A disk containing a point p ∈ F, with diam-

eter at most LFS(p), intersects F in a topological disk.

Proof. Consider the contrapositive: any disk B containing

p that does not intersect F in a topological disk contains a point

m of the medial axis, by Lemma 1. The closest point to p on the

medial axis is at distance LFS(p) from p, so d(p,m) ≥ LFS(p).

Since B contains the segment (p,m), its diameter is greater than

LFS(p).

COROLLARY 4. A disk centered at a point p ∈ F, with radius

at most LFS(p), intersects F in a topological disk.

Proof. Similar to Corollary 3.

The following objectswere defined byChew [16], fromwhom

we borrow the idea of polygonalizing a curve using empty

disks centered on the boundary. We take responsibility for the

names.

DEFINITION. A curve Voronoi disk is a maximal disk, empty

of sample points, centered at a point of the curve. A curve

Voronoi vertex is the center of a curve Voronoi disk.

Note that a curve Voronoi vertex is the restriction of an edge

of the Voronoi diagram of S to the curve F .

COROLLARY 5. A curve Voronoi disk on an r-sampled smooth

curve F, r ≤ 1, intersects F in a topological disk.

Proof. Follows from Corollary 4.

For large r , it is possible for there to be a set S of points that

r -samples two topologically different curves, as in Fig. 6. The

sample points are placed at the vertices of two regular octagons,

positioned so that two adjacent pairs of vertices form a square.

The points 1-sample two different curves, one having a single

connected component and the other having two.

OBSERVATION 6. Let S be a set of points in the plane. There

may not be a unique graph on S that is the polygonal recon-

struction of a smooth curve r-sampled by S, for r ≥ 1.

For considerably smaller r , we shall show that there is only

one possible reconstruction and that our graphs find it.

6. FLATNESS

Considering the definition of the medial axis, and referring

back to Fig. 5, we observe the following:

LEMMA 7. A disk tangent to a smooth curve F at a point p

with radius at most LFS(p) contains no points of F in its interior.

Proof. The perpendicular distance from p to the point m ′

on the medial axis that is the center of the largest empty tangent

disk at p is at least LFS(p). The tangent disk of radius LFS(p)

at p must therefore be contained in the largest tangent disk and

hence is also empty.

We use this lemma to show quantitatively that the intersection

of a smooth curve with a small enough disk is not only a topo-

logical disk but also rather flat. The calculations will be based

on simple geometric facts about the angles and points labeled in

Fig. 7. Roughly speaking, we can think of s as a sample and p

as an adjacent curve Voronoi vertex. Let r be the distance from

s to p, and let the distance form s to c, and the distance from p

to c, equal 1.

OBSERVATION 8. It is easy to verify the following:

i. The length of segment (s, x) is sin(γ ).

ii. r = d(s, p) = 2 sin(γ /2), so γ = 2 arcsin(r/2).

iii. The angle α = γ /2 = arcsin(r/2).

iv. The angle between the tangent line L at p and the

segment (s, p) is α = arcsin(r/2).

LEMMA 9. For an r-sampled curve in the plane, r < 1, the

angle formed at a curve Voronoi vertex between two adjacent

samples is at least π − 2 arcsin(r/2).

FIG. 6. The 16 points 1-sample both heavy curves. The light lines are the

medial axes.
FAIL



Fundamental requirements:

Sensitive to noise:

Combinatorial Methods

sample spacing ≤ O(curve separation)
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FIG. 15. Examples from our implementation. Input point sets are on the left, crusts in the middle, and β-skeletons on the right.

show for the crust. The crust tends to err on the side of adding

edges, which can be useful. But the β-skeleton could be biased

toward adding edges, at the cost of increasing the required sam-

pling density, by tuning the parameter β.

The main open question is the polygonal reconstruction of

two-dimensional surfaces in R3. This is an important problem

in graphics, and a series of SIGGRAPH papers have presented

effective practical algorithms [17–20]. Neither of our planar

graphs gives a polygonal reconstruction when generalized toR3

in a straightforward way, although it seems possible that either

idea could be elaborated into a working algorithm.

Many questions remain about two-dimensional reconstruc-

tion. There should be results on the quality of the reconstruction

of curves with branches and endpoints. There are probably ver-

sions of our theorems that do not require smoothness, but only

that any angles be bounded away from zero by a function of

r . It should be possible to prove something about the quality

of the reconstruction in the presence of small errors in sample

positions and of additive noise.

Better lower bounds would also be interesting. None of our

constants are tight, and they are far from the lower bound r ≤ 1

of Observation 6. The comparison is not really fair here, since

our graphs also reconstruct some curves with branches and

endpoints. An algorithm that produced only reconstructions of

smooth closed curves could perhaps get by with a larger value

of r .

The work in [6–8] dealt with the polygonal analog of the

medial axis, consisting of those edges of the Voronoi diagram

of S whose dual Delaunay edges do not belong to the polygonal

reconstruction of the boundary; see Fig. 16. One can think of this

graph as theanticrust.Our bounds on the quality of the polygonal

reconstruction of the boundary should imply something about

the quality of the anticrust as a reconstruction of the medial

axis.

Frequently piecewise-linear reconstruction is only a step to-

ward smooth reconstruction. Since theLFS gives an upper bound

on the curvature, it should be possible to reconstruct F with

spline rather than line segments in such a way as to improve



Active Contours/Snakes

Start with small circle

Expand circle, stopping at edges.

Try to maintain curve smoothness.



Level Set Segmentation
Don’t study contour directly - study level sets of 
auxiliary function instead.

E(x) is result of edge detectors. 

∂tφ(x, t) =
|∇φ(x, t)|
1 + αE(x)

f(φ(x, t)− 1)/2 + 2∆φ(x, t)

+ regularization



LEVEL SET SEGMENTATION



LEVEL SET SEGMENTATION



LEVEL SET SEGMENTATION



LEVEL SET SEGMENTATION



LEVEL SET SEGMENTATION



LEVEL SET SEGMENTATION



LEVEL SET SEGMENTATION



LEVEL SET SEGMENTATION



LEVEL SET SEGMENTATION



LEVEL SET SEGMENTATION



2 dimensions is not 1 
dimension “done twice”



Parameterize images

transform for every λ > 0, i.e.:

∀λ > 0, sup
|!k|≥kr

∣∣∣∣
∫

ei!k·x
ρ(x)χ((x − x0)λ)dx

∣∣∣∣ = O(kr
−3/2) (2.1)

In order to find the singular support, concentration kernel methods [10,
12, 14, 15, 16] multiply the Fourier data ρ̂(#k) by a function which gives heavier
weight to high frequencies than to low frequencies (a high-pass filter). Since high
frequencies encode the location of singularities but are unaffected by smooth
parts of the image, this method isolates discontinuities from the rest of the im-
age. In short, concentration kernel methods find the location of singularities by
flagging local maxima in the inverse Fourier transform of the high-pass filtered
Fourier data.

The wavefront of a function consists of the points (x0,#k0) ∈ R2 × S1 for
which the Fourier transform of χ(λ(x − x0))ρ(x) decays slowly in the direction
#k0 = (kr, kθ):

∀λ > 0, sup
r≥kr

∣∣∣∣
∫

eirk0·xρ(x)χ((x − x0)λ)dx

∣∣∣∣ = O(kr
−3/2) (2.2)

As indicated in the introduction, while the singular support of ρ(x) only contains
the location of singularities, the wavefront also contains the direction of the
singularities.

Remark 2.1 In the language of computational geometry, the singular support
is a set of points, while the wavefront is a set of surfels (pairs of the form (x, k)
with x representing a position and k a direction).

2.1 Definition of the image class

To simplify the theory, we consider a special class of images. In particular, we
consider two-dimensional images supported on [0, 1]2 and vanishing near the
boundaries, which consist of a set of piecewise constant functions on which is
superimposed a globally smooth function:

ρ(x) =




M−1∑

j=0

ρj1γj(x)



 + ρtex(x) (2.3)

where γj(t) are simple closed curves, and 1γj (x) = 1 for x in the interior of γj

and 0 elsewhere. The “texture” term ρtex(x) is band limited, i.e. ρ̂tex(#k) = 0

for
∣∣∣#k

∣∣∣ ≥ ktex.

Definition 2.2 Let γj(t) be a simple closed curve. The curvature at each point
is denoted by κj(t), the normal to γj(t) is denoted by Nj(t), and the tangent is
denoted by Tj(t).

3



Parametric Model
Segmentation problem: 

Reconstruction problem:

Find: M, γj(t)

Find: M, γj(t), ρj , ρtex(x)



Edges are the singular support of the function:

Singular support is set of points

Singular Support

transform for every λ > 0, i.e.:

∀λ > 0, sup
|!k|≥kr

∣∣∣∣
∫

ei!k·x
ρ(x)χ((x − x0)λ)dx

∣∣∣∣ = O(kr
−3/2) (2.1)

In order to find the singular support, concentration kernel methods [10,
12, 14, 15, 16] multiply the Fourier data ρ̂(#k) by a function which gives heavier
weight to high frequencies than to low frequencies (a high-pass filter). Since high
frequencies encode the location of singularities but are unaffected by smooth
parts of the image, this method isolates discontinuities from the rest of the im-
age. In short, concentration kernel methods find the location of singularities by
flagging local maxima in the inverse Fourier transform of the high-pass filtered
Fourier data.

The wavefront of a function consists of the points (x0,#k0) ∈ R2 × S1 for
which the Fourier transform of χ(λ(x − x0))ρ(x) decays slowly in the direction
#k0 = (kr, kθ):

∀λ > 0, sup
r≥kr

∣∣∣∣
∫

eirk0·xρ(x)χ((x − x0)λ)dx

∣∣∣∣ = O(kr
−3/2) (2.2)

As indicated in the introduction, while the singular support of ρ(x) only contains
the location of singularities, the wavefront also contains the direction of the
singularities.

Remark 2.1 In the language of computational geometry, the singular support
is a set of points, while the wavefront is a set of surfels (pairs of the form (x, k)
with x representing a position and k a direction).

2.1 Definition of the image class

To simplify the theory, we consider a special class of images. In particular, we
consider two-dimensional images supported on [0, 1]2 and vanishing near the
boundaries, which consist of a set of piecewise constant functions on which is
superimposed a globally smooth function:

ρ(x) =




M−1∑

j=0

ρj1γj(x)



 + ρtex(x) (2.3)

where γj(t) are simple closed curves, and 1γj (x) = 1 for x in the interior of γj

and 0 elsewhere. The “texture” term ρtex(x) is band limited, i.e. ρ̂tex(#k) = 0

for
∣∣∣#k

∣∣∣ ≥ ktex.

Definition 2.2 Let γj(t) be a simple closed curve. The curvature at each point
is denoted by κj(t), the normal to γj(t) is denoted by Nj(t), and the tangent is
denoted by Tj(t).

3

!x0 = γj(t)



Singular support extends to wavefront in higher 
dimensions

Wavefront is set of surfels

Wavefront Set

transform for every λ > 0, i.e.:

∀λ > 0, sup
|!k|≥kr

∣∣∣∣
∫

ei!k·x
ρ(x)χ((x − x0)λ)dx

∣∣∣∣ = O(kr
−3/2) (2.1)

In order to find the singular support, concentration kernel methods [10,
12, 14, 15, 16] multiply the Fourier data ρ̂(#k) by a function which gives heavier
weight to high frequencies than to low frequencies (a high-pass filter). Since high
frequencies encode the location of singularities but are unaffected by smooth
parts of the image, this method isolates discontinuities from the rest of the im-
age. In short, concentration kernel methods find the location of singularities by
flagging local maxima in the inverse Fourier transform of the high-pass filtered
Fourier data.

The wavefront of a function consists of the points (x0,#k0) ∈ R2 × S1 for
which the Fourier transform of χ(λ(x − x0))ρ(x) decays slowly in the direction
#k0 = (kr, kθ):

∀λ > 0, sup
r≥kr

∣∣∣∣
∫

eirk0·xρ(x)χ((x − x0)λ)dx

∣∣∣∣ = O(kr
−3/2) (2.2)

As indicated in the introduction, while the singular support of ρ(x) only contains
the location of singularities, the wavefront also contains the direction of the
singularities.

Remark 2.1 In the language of computational geometry, the singular support
is a set of points, while the wavefront is a set of surfels (pairs of the form (x, k)
with x representing a position and k a direction).

2.1 Definition of the image class

To simplify the theory, we consider a special class of images. In particular, we
consider two-dimensional images supported on [0, 1]2 and vanishing near the
boundaries, which consist of a set of piecewise constant functions on which is
superimposed a globally smooth function:

ρ(x) =




M−1∑

j=0

ρj1γj(x)



 + ρtex(x) (2.3)

where γj(t) are simple closed curves, and 1γj (x) = 1 for x in the interior of γj

and 0 elsewhere. The “texture” term ρtex(x) is band limited, i.e. ρ̂tex(#k) = 0

for
∣∣∣#k

∣∣∣ ≥ ktex.

Definition 2.2 Let γj(t) be a simple closed curve. The curvature at each point
is denoted by κj(t), the normal to γj(t) is denoted by Nj(t), and the tangent is
denoted by Tj(t).

3

(!x0,!k0) = (γj(t),±Nj(t))



2D is not 1D squared

singular support ⊂ RN

wavefront ⊂ RN × (SN−1/{±1})

Pxwavefront = singular support



2D is not 1D squared

R1 × R1 "= R2 × (S1/{±1})



Wavefront Detection



Wavefront Detectors

What does the Fourier transform of an edge look 
like?



Wavefront Detectors
Calculate with Green’s Theorem

We can use Green’s theorem to rewrite the Fourier transform of 1γj (x)

as follows. Let F (!k, x) = (F1(!k, x), F2(!k, x)) = −i
∣∣∣!k

∣∣∣
−2

ei"k·x!k⊥ with !k⊥ =

[−k2, k1]T . Then by Green’s theorem:

1̂γj(!k) =

∫ ∫

Ωj

ei"k·xdx1dx2 =

∫ ∫

Ωj

∂x1
F2(!k, x) − ∂x2

F1(!k, x)dx1dx2

=

∫

S1

F (!k, γj(t)) ·
dγj(t)

dt
dt =

1

i|!k|2

∫

S1

ei"k·γj(t)!k⊥ · γ′
j(t)dt (3.1)

(with Ωj the region bounded by γj). This trick is taken from [22].

We can now use stationary phase to approximate 1̂γj (!k) for large k. For
this, express k in polar coordinates (kr, kθ), fix a direction kθ, and consider
what happens as kr becomes large. As we remarked earlier, the phase !k · γj(t)

becomes stationary only when !k · γ′
j(t) = 0 or !k · Tj(t) = 0. This is precisely

where k points normal to the curve, and it is these locations that dominate
1̂γj(!k):

Proposition 3.1 Let tj(!k) correspond to the value of t at which Nj(t) ‖ k and

Nj(t) · !k > 0 (i.e. the normal to γj(t) points in the direction k). Then:

M−1∑

j=0

ρj 1̂γj(!k) =
M−1∑

j=0

ρj




ei"k·γ(tj("k))

∣∣∣!k
∣∣∣
3/2

√
π√

κj(tj(!k))
+

ei"k·γ(tj(−k))

∣∣∣!k
∣∣∣
3/2

√
π√

κj(tj(−!k))





+
E(!k)
∣∣∣!k

∣∣∣
2 (3.2)

where E(!k) ≤ Cgeo with

Cgeo = Mρ

(
4 +

8κ̄

πκ
+ 2

√
2κ̄

κ

)
+ 3ρ

supj

∥∥γ′′′
j (t)

∥∥
L∞

κ

∑

j

arclength(γj) . (3.3)

Note that Cgeo incorporates both geometric and contrast information about
the image itself. This result is proved carefully in Appendix A. The basic idea
behind the proof is simple, however. Set k = kr

!kθ, with !kθ fixed. Then:
∫

S1

ei"k·γj(t)!k⊥ · γ′
j(t)dt =

∫

S1

eikrf(t)!k⊥ · γ′
j(t)dt

with f(t) = !kθ · γj(t). The phase function f(t) is stationary when !kθ · γ′
j(t) = 0,

or equivalently the place where !kθ · Nj(t) = ±1 (i.e. tj(!k) = tj(!kθ)). By
Assumption 4, we find that γ′′

j (t) = κj(t)Nj(t) is nonzero. We restrict the

8
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Wavefront Detectors
Phase stationary when !k · γ′(t) = 0

in the sampling beyond ktex. In most of our experiments, we take ktex = 2π ·16,
and kmax = 2π · 32.

Finally, we make the technical assumption that the curves have non-vanishing
curvature:

Assumption 4 We assume that the curvature of the curves is bounded below.

∀i = 0 . . .M − 1, κi(s) ≥ κ > 0 (1.5)

Remark 1.2 The assumption (1.5) implies that the region bounded by γi(t) is
convex. This geometric fact is not used by our algorithm in any way.

2 Large k Asymptotics of 1̂γj(!k)

In this section we wish to compute the large k asymptotics of 1̂γj ($k). In partic-

ular, we will show that 1̂γj($k) is dominated solely by the parts of γj(t) where

γ′
j(t) · $k = 0, i.e. where k ⊥ Tj(t).

We begin by using Green’s theorem to rewrite the Fourier transform of 1γj (x)

as follows. Let F ($k, x) = (F1($k, x), F2($k, x)) = −i
∣∣∣$k

∣∣∣
−2

ei"k·x$k⊥ with $k⊥ =

[−k2, k1]T . Then by Green’s theorem:

1̂γj($k) =

∫ ∫

Ωj

ei"k·xdx1dx2 =

∫ ∫

Ωj

∂x1
F2($k, x) − ∂x2

F1($k, x)dx1dx2

=

∫

S1

F ($k, γj(t)) ·
dγj(t)

dt
dt =

1

i|$k|2

∫

S1

ei"k·γj(t)$k⊥ · γ′
j(t)dt (2.1)

(with Ωj the region bounded by γj). This trick is taken from [6].

We can now use stationary phase to approximate 1̂γj ($k) for large k. For
this, express k in polar coordinates (kr, kθ), fix a direction kθ, and study the

behavior as kr becomes large. The phase function $k · γj(t) becomes stationary

only when $k · γ′
j(t) = 0 or $k · Tj(t) = 0 (i.e., kθ points normal to the curve).

Proposition 2.1 Let tj($k) correspond to the value of t at which Nj(t) ‖ k and

Nj(t) · $k > 0 (i.e. the normal to γj(t) points in the direction k). Then:

M−1∑

j=0

ρj 1̂γj($k) =
M−1∑

j=0

ρj




ei"k·γ(tj("k))

∣∣∣$k
∣∣∣
3/2

√
π√

κj(tj($k))
+

ei"k·γ(tj(−k))

∣∣∣$k
∣∣∣
3/2

√
π√

κj(tj(−$k))





+ O(kr
5/2) (2.2)

Proof. Let us consider a single curve γj(t) = γ(t) and drop the subscripts (so
t(kθ) = tj(kθ)). By Assumption 4, γ′′(t) does not vanish. We will evaluate the
line integral (2.2) by the saddle point method.

3

tj(!k) satisfies !k · γ′(tj(!k)) = 0



Wavefront Detectors
Ray                 encodes location of edges with 
normals pointing in direction

Localizing on this region yields surfels in the 
wavefront pointing in direction 

!k = kr
!kθ

!kθ

!kθ



Figure 3: An illustration of the sharp directional filter. The first panel shows
the image. The second panel shows the directional filter in k-space. The third
panel shows the edge map [Dθ,αρ̂](x) with θ = π/4 and α = π/16. The red
lines are the |[Dθ,αρ̂](x)| = 2.4 contour lines, while the green lines are the actual
(analytically known) edges of the image. The fourth panel shows the directional
filter in the x-domain.
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Figure 3: An illustration of the sharp directional filter. The first panel shows
the image. The second panel shows the directional filter in k-space. The third
panel shows the edge map [Dθ,αρ̂](x) with θ = π/4 and α = π/16. The red
lines are the |[Dθ,αρ̂](x)| = 2.4 contour lines, while the green lines are the actual
(analytically known) edges of the image. The fourth panel shows the directional
filter in the x-domain.
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DIRECTIONAL FILTERS



WAVEFRONT FILTERS
ARROWS ARE TANGENTIAL TO THE EDGE



WAVEFRONT FILTERS
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WAVEFRONT FILTERS
ARROWS ARE TANGENTIAL TO THE EDGE



WAVEFRONT FILTERS
ARROWS ARE TANGENTIAL TO THE EDGE



WAVEFRONT FILTERS
ARROWS ARE TANGENTIAL TO THE EDGE



WAVEFRONT FILTERS
ARROWS ARE TANGENTIAL TO THE EDGE



WAVEFRONT FILTERS
ARROWS ARE TANGENTIAL TO THE EDGE



WAVEFRONT FILTERS
ARROWS ARE TANGENTIAL TO THE EDGE



WAVEFRONT FILTERS
ARROWS ARE TANGENTIAL TO THE EDGE



SKIN OF LOWER BACK



ZERO CURVATURE EXAMPLE
SPURIOUS EDGES ARE NOT DETECTED



ZERO CURVATURE EXAMPLE
SPURIOUS EDGES ARE NOT DETECTED



NOISE SENSITIVITY



NOISE SENSITIVITY



Analysis



Assumptions

MRI measures Fourier transform of density

Image piecewise constant plus smooth part

The image boundaries are smooth

Curvature bounded above and below

The boundaries are separated from each other

Minimum edge contrast
NOT SATISFIED IN PRACTICE



How it works

eik·γj(tj("k))

|k|3/2

√
π√

κj(tj(#k))
+ O(|k|−5/2)

Start with asymptotic expansion



How it works

Drop higher order terms and apply directional filter

eik·γj(tj("k))

|k|3/2

√
π√

κj(tj(#k))
V(kθ)|k|1/2W(|k|)



How it works

Then inverse Fourier Transform

∫ α

−α

∫ ∞

0

eik·γj(tj(kθ))e−ik·x

k3/2
r

√
π√

κj(tj(kθ))
V(kθk

3/2
r W(krdkrdkθ



How it works

Change variables

∫ tj(α)

tj(−α)

∫ ∞

0

eik·(γj(t)−x)

k3/2
r

√
π√

κj(t)
V(kθ(t)k3/2

r W(krdkrdt



How it works

And evaluate inner integral

∫ tj(α)

tj(−α)
eik·γj(t)

√
πκj(t)V(kθ(t)k3/2

r W̌(Nj(t) · [γj(t)− x])dkrdt



Proof of Correctness

Figure 2: An illustration of the integrand in the last line of (4.2) for two different
values of t.

7

SCHEMATIC PLOT OF THE INTEGRAND



Proof of Correctness
Fast decay in normal 
direction

Polynomial decay in 
tangential direction

Parabolic scaling:

Figure 3: An illustration of the source of decay proved by Proposition 4.2.

parts to obtain:

(4.2)

=
√

π

∫ tj(α)

tj(−α)

V(kθ(t))
√

κj(t)

κj(t)γ′
j(t) · [γj(t) − x]

W̌(Nj(t) · [γ(t)−x])κj(t)γ
′
j(t) · [γj(t)−x]dt

= −
√

π

∫ tj(α)

tj(−α)
W̌(Nj(t) · [γ(t) − x])∂t

V(kθ(t))√
κj(t)γ′

j(t) · [γj(t) − x]
dt

= −
√

π

∫ tj(α)

tj(−α)
W̌(Nj(t) · [γ(t) − x]) ×

(
V ′(kθ(t))kθ

′(t)√
κj(t)γ′

j(t) · [γj(t) − x]

+
V(kθ(t))κ′

j(t)

2(κj(t))3/2γ′
j(t) · [γj(t) − x]

+
V(kθ(t)) (γ′′(t) · [γj(t) − x] + γ′(t) · γ′(t))

κj(t)(γ′
j(t) · [γj(t) − x])2

)
dt

= −
√

π

∫ tj(α)

tj(−α)
W̌(Nj(t) · [γ(t) − x]) ×

(
V ′(kθ(t))κj(t)√

κj(t)γ′
j(t) · [γj(t) − x]

+
V(kθ(t))κ′

j(t)

2(κj(t))3/2γ′
j(t) · [γj(t) − x]

+
V(kθ(t)) (κj(t)Nj(t) · [γj(t) − x] + 1)

κj(t)(γ′
j(t) · [γj(t) − x])2

)
dt

(4.7)

9

k domain: width = O(
√

length)
x domain: width = O(length2)



Theorem

A directional filter will extract at least one surfel 
near the point where the tangent of an edge 
equals the direction of the filter.

It will not extract surfels far from the edge.

The theorem only applies to unrealistic parameter 
choices. Algorithm still works on phantoms, 
however. 



Segmentation with Surfels



Combinatorial 
Reconstruction

Goal: combinatorial reconstruction of curves from 
scattered surfels

How can tangential information help?



Figure 3: The forbidden zones, as described in Lemma 2.5. The orange (darker
region) is the forbidden zone, and the blue (lighter region) is the set of points a
distance πκm

−1/2 away from pi.

Definition 2.2 Let d(#p, #q) denote the usual Euclidean metric, d(#p, #q) = |#p − #q|.
Let d!m(#p, #q) denote the distance in the #m direction between #p and #q, i.e. d!m(#p, #q) =
|(#p − #q) · #m|.

Definition 2.3 For a point #p and a curve γi(t), we say that #p ∈ γi(t) if
∃tsuchthatγi(t) = #p.

2.1 The Forbidden Zone

Before explaining the algorithm which constructs the polygonalization of a figure
(the set of curves {γi(t)}0...M−1) from discrete data {#pi, #mi}i=0...N−1, we prove
a basic lemma which forms the foundation of our method. We assume for the
remainder of this section that the figure satisfies Assumption 1.

Definition 2.4 For a point #pi, we refer to the set ∪±Bκm
−1(#pi ± #m⊥

i κm
−1) as

its forbidden zone, illustrated in Fig. 3. Here, Br(#p) is the usual ball of radius
r about #p.

4

Combinatorial 
Reconstruction

Points can only be 
connected in tangential 
direction.



Reconstruction 
Algorithm:
Connect all points close to each other, but not 
within forbidden region.

Prune graph, connecting only nearest tangential 
neighbors within the graph.

Result is polygon with same topology as original 
curve.

Then smooth polygon.



Reconstruction 
Algorithm
Proven to work.

Proof is an exercise in elementary calculus. 

Can filter uncorrelated noise via geometric 
constraints.

CURVE RECONSTRUCTION FROM POINTS AND TANGENTS.
L. GREENGARD AND C. STUCCHIO

ARXIV.ORG/ABS/0903.1817

sample spacing = O(
√

curve separation)



FILTERING UNCORRELATED NOISE



Figure 10: The result of applying the segmentation algorithm to a 64× 64 grid
of spectral data. Note that the separation of two curves near the center is
smaller than a pixel, but that wavefront/surfel reconstruction has no difficulty
in resolving the them.

Theorem 6.3 Suppose that Assumption 1, 2, 3 and 4 hold. Then for suffi-
ciently large ktex, kmax, Algorithm 2 will successfully approximate the singular
support of ρ(x).

The result of applying Algorithm 2 to spectral data for our phantom on
a 64 × 64 grid is shown in Fig. 10. The deviation from the exact result is
noticeable, but is on the order of a pixel since we are using low resolution data
to make the nature of the error clear.
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SEGMENTED PHANTOM
OVERSIMPLIFIED GEOMETRY



Surfel Segmentation

Can prove segmentation algorithm correct by 
plugging output of wavefront theorem into input of 
curve reconstruction theorem.

Combinatorial curve reconstruction only works for 
simplified geometry. 



Open problems

Build a level-set based segmentation algorithm 
that uses surfel data.

Clean up the surfel data (Bayesian tricks)



Reconstruction



Reconstruction
Assume segmentation problem is approximately 
solved.

Obvious idea: compute Fourier transform of 
discontinuities, subtract off, leaving only smooth 
part of function.

Then manually draw discontinuities back.



Fail



Fourier Extension
Best approximation to low frequency data:

High frequency data missing, but we can 
approximate:

ρ̂meas(k)

M−1∑

j=1

ρj 1̂γj (k) =
M−1∑

j=1

ρj
1

i|k|2

∫

S1
eik·γj(t)k⊥ · γ′j(t)dt



Fourier Extension
Smooth Transition between them to avoid 
artifacts:

ρ̂reconstructed(k) = LPF(k)ρ̂meas(k)

+ HPF(k)
M−1∑

j=1

ρj 1̂γj (k)



Fourier Extension



Fourier Extension



Conclusion

The wavefront of an image has more information 
than it’s singular support

Surfels can be extracted directly from raw data

Effectively segments and reconstructs phantoms

Still needed: good geometric algorithms for surfel 
reconstruction


