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Vlagnetic Resonance
lmaging

% EXxcellent soft tissue
contrast.

% No radiation.

% 2003 Nobel Prize
(Lauterberger, Mansfield).
Damadian maybe deserves
credit too?




MY LATERAL SPINE




Objectives and Challenges

GOALS CHALLENGES

* Show radiologist * Noise

accurate pictures
* Artifacts
* Quantify anatomical

features * Ambiguity
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Exact Phantom
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Diagnosis




How an MRI works




How an MRI works

* Big Magnet: 1-2 Tesla
* Nucleus of atoms has spin

* Level Splitting: magnetic field breaks spin
symmetry




How an MRI Works

/\/\/\ SPIN UP (EXCITED STATE)

SPIN DOWN (GROUND STATE)

* EXxcited state decays to ground, emits radiation.

* Measuring the radiation gives information on
object.




How an MRI works

* Bloch Equation (macroscopic model):
O, M(z,t) = ~M x B(x,t) —
PioM  P3y(M(z,t) — My(x))
15
Mo ()
M (x,0)

* M(t) is magnetization, B(t) the magnetic field.




PHILIDS

HOW AN MRI WORKS

COORDINATE SYSTEM




How an MRI works

* Hit system with weak RF pulse (excitation):

B(z,t) =

—

M(z,t) x B(z,t) =

0, f(t)w(z>),0;

:07 Oa MO (.CI?)] X [Ov f(t)w(xi%)v O}

—Mo(z) f(t)w(zs), 0,0

* Rotates spins from z-direction into x-y plane




How an MRI works

* Switch off excitation pulse, use probe field:

B(t) = [By+ G(t) - [x1,x2,0]7]Z

* X-Y components decoupled from Z component

— —

* Substitution: M(t) = M, (t) + 1M, (t)




How an MRI works

* Bloch Equation:

-
o

oM (x,t) = _—fm(BO + G(t) - =)

M(z,ty) = p(z)w(z:)h(to)




How an MRI works

% Use RF receiver colls measure emission in the
sample.

S(t) ~ /M(x,t)dm + noise




How an MRI works

% Solution:

M (z,t) = p(x)w(xs)e~1Bote= e GE)A) T —t/ T

* Simplify:




How an MRI works

% Solution:
Mt =

%* Signal:

S(t) ~ e t/12 /p(:v)w(afg)e_ik(t)'xdaf + noise




How an MRI works

% Signal:
S(t) ~ e T2 p(k(t)) + noise

* An MRI| measures the Continuous Fourier
Transform of the density.




Image Reconstruction




Fourier Inversion

* Hugely ill posed problem.

Given p(k1),...,p(kn), find p(x)

* Then:




Fourier Inversion

% Fourier’s Theorem. Assume Cartesian sampling.

)

* Best approximation to density in L*([0, 1]°) norm




Fourier Inversion

* Fourier Transform not convergent pointwise

DFT

0.0090

0.0085 -
0.0080 | -
0.0075 | -
0.0070 | -

N NNAEN

* Regularization discards information

p(2) ~ 3 p(2miyuw (i)
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OTHER ARTIFACTS




Current Solution

* Reconstruct image using regularized discrete
Fourier transform:

p(z) ~ 3 p(2miyuw (i)

% Clean up regularized image in x-domain.

* Segment/identify based on cleaned up image.




Segmentation




Segmentation

GOALS

* Segmentation by anatomy/composition - outline
the cancerous part

* Segmentation by perception - draw the same
outlines as a human

* Image-space segmentation - separate based on
image boundaries




Image boundadaries

* Image boundaries are places where image
composition changes sharply.

* In medical images, this happens at discontinuities
of image.

% Not true In other modalities.




Discontinuities

* Want to find discontinuities of an image.

* lmage domain methods fail due to artifacts.

% Want to find discontinuities from raw MR

| data, I.e.

from samples of Fourier transform of image.




Discontinuities

* Simple model: a 1-d function with a discontinuity:

* |If we localize on high frequencies, we can extract
edges.




1D Edge
Detection

I?d4gemap of fo(';?)




2D Edge Detectors

h(k)

% Tensor Products

R°=R®R

% Radial Variables

DET ™ [h(k)p(k).




Filtered DFT of MRI Image

RESULT OF HIGH FREQUENCY FILTERS




RESULT OF HIGH FREQUENCY FILTERS



Extracted Edges, threshold=0.1

RESULT OF HIGH FREQUENCY FILTERS




Extracted Edges, threshold=0.25

RESULT OF HIGH FREQUENCY FILTERS




Extracted Edges, threshold=0.5

RESULT OF HIGH FREQUENCY FILTERS




Extracted Edges, threshold=0.75

RESULT OF HIGH FREQUENCY FILTERS




Extracted Edges, threshold=0.25
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Boundary Reconstruction

% Combinatorial methods
% Active Contours/Snakes/Level Sets

* Bayesian Methods




Combinatorial Methods

* Delaunay-methods: find the
Crust of a point-set.

% Start with Delaunay graph.

* |f a disk touches both ends of an
edge in the Delaunay graph also
touches a third vertex, then
delete the edge.

(AMENTA, BERN, DEY, KUMAR, EPPSTEIN)




Combinatorial Methods




Combinatorial Methods

>_.




Combinatorial Methods

* Fundamental requirements:

sample spacing < O(curve separation)

% Sensitive to noise:

e

O




Active Contours/Snakes

* Start with small circle
* Expand circle, stopping at edges.

* Try to maintain curve smoothness.




| evel Set Segmentation

* Don’t study contour directly - study level sets of
auxiliary function instead.

0b(o,t) = e FOla,t) = 1)/2+ 289(z, 1)

+ regularization

* E(X) is result of edge detectors.




LEVEL SET SEGMENTATION




LEVEL SET SEGMENTATION




LEVEL SET SEGMENTATION




LEVEL SET SEGMENTATION




LEVEL SET SEGMENTATION




LEVEL SET SEGMENTATION




LEVEL SET SEGMENTATION




LEVEL SET SEGMENTATION




LEVEL SET SEGMENTATION
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2 dimensions is not 1
dimension “done twice”




Parameterize iImages

M—1

pjl’Yj (33)
=0




Parametric Model

* Segmentation problem:

Find: M, ’yj (t)

leconstruction problem:

Find: M7 Vg (t)v Pjs Ptex (CIZ’)




Singular Support

% Edges are the singular support of the function:

VA >0, sup
k[ =k

* Singular support is set of points

— O(k, /2




Wavefront Set

% Singular support extends to wavefront in higher
dimensions

VA > 0, sup /e"ko"’“’p(x)x((:c — xo)N)dz| = O(kr_g/Z)

r>ky

% Wavefront is set of surfels

(Eo ko) = ki)




2D I1s not 1D squared

singular support C R*

wavefront ¢ RYY x (SN_l/{zzl})

P ,.wavefront = singular support




2D 1s not 1D squared

' LR x (S/{£1})




Wavefront Detection




VWavetront Detectors

* What does the Fourier transform of an edge look
like?




VWavetront Detectors

% Calculate with Green’s Theorem

E // ik- xd.ﬁli‘ldiljg —// 8551F2 k‘ .CIZ 6’x2F1( )dlL’ldCIZ‘Q

—

dy;(t)
RO

(HAT TIP: EUGENE SORETS)




VWavetront Detectors

* Phase stationary when & - +/(¢) = 0

Y3, IR ik (t;(K)) JT

S pj17j(E): ij 3/92 TR
j=0 e / \//fj(tj(/f))

—

tj(lg) satisfies k -




VWavetront Detectors

* Ray k = k. .k, encodes location of edges with
normals pointing in direction &,

% Localizing on this region yields surfels in the
wavefront pointing in direction g,
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Directional Filter (k-domainj Directional Filter (z-domain)
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WAVEFRONT FILTERS




WAVEFRONT FILTERS




WAVEFRONT FILTERS




WAVEFRONT FILTERS




WAVEFRONT FILTERS




WAVEFRONT FILTERS




WAVEFRONT FILTERS




WAVEFRONT FILTERS




WAVEFRONT FILTERS




WAVEFRONT FILTERS




WAVEFRONT FILTERS




SKIN OF LOWER BACK




ZERO CURVATURE EXAMPLE




Exact Contours, Extracted Surfels

ZERO CURVATURE EXAMPLE
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N (I)Edgemap n0|se = 7.5% 1'I(')hresho|ds n0|se = 7.5%
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Analysis




Assumptions

* MRI measures Fourier transform of density

* Image piecewise constant plus smooth part

* The image boundaries are smooth

% Curvature bounded above and below

* The boundaries are separated from each other

* Minimum edge contrast
NOT SATISFIED IN PRACTICE




HoOw It WOrks

otk (¢ (K)) VT

= — + O(Jk|~5/2)
B2 Jis k5 (R))

* Start with asymptotic expansion




HoOw It WOrks

otk (t; (K)) N

= (ko) |2 (]
B2 Jis k5 (R))

* Drop higher order terms and apply directional filter




HoOw It WOrks

/ /OO etk 7; (t (ke))e_Zk % ﬁ V(keki/QW(k’rdkrde
= 3/2 \/’{j (K

% Then inverse Fourier Transform




HoOw It WOrks

ti(a) oo ik:(v;(t)—x)
/ 3 V(ko(t) K3 W (k,dk,dt
t

e k2 ST

% Change variables




HoOw It WOrks

/t (o) zk Y3 (1) \/ﬂli] (]{79( )kf/QW(Nj (t) . hj (t) S5 $])dkrdt
ti(—

a)

* And evaluate inner integral




Proof of Correctness

SCHEMATIC PLOT OF THE INTEGRAND




Proof of Correctness

* Fast decay in normal
direction

* Polynomial decay in
tangential direction

* Parabolic scaling:

k domain:  width = O(/length)
x domain:  width = O(length?)




T heorem

* A directional filter will extract at least one surfel
near the point where the tangent of an edge
equals the direction of the filter.

* It will not extract surfels far from the edge.

* The theorem only applies to unrealistic parameter
choices. Algorithm still works on phantoms,
howevetr.




Segmentation with Surfels




Combinatorial
Reconstruction

% Goal: combinatorial reconstruction of curves from
scattered surfels

* How can tangential information help?




Combinatorial
Reconstruction

Forbidden regions

* Points can only be
connected in tangential
direction.




Reconstruction
Algorithm:

* Connect all points close to each other, but not
within forbidden region.

* Prune graph, connecting only nearest tangential
neighbors within the graph.

* Result is polygon with same topology as original
curve.

* Then smooth polygon.




Reconstruction
Algorithm

% Proven to work.

sample spacing = O(4/curve separation)

* Proof is an exercise in elementary calculus.

% Can filter uncorrelated noise via geometric
constraints.

CURVE RECONSTRUCTION FROM POINTS AND TANGENTS.
L. GREENGARD AND C. STUCCHIO
ARXIV.ORG/ABS/0903.1817




Point and Tangents, Noise=0
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Filtered Réconstruction

FILTERING UNCORRELATED NOISE




Segmented Image Exact Contours

SEGMENTED PHANTOM




Surfel Segmentation

* Can prove segmentation algorithm correct by
plugging output of wavefront theorem into input of
curve reconstruction theorem.

% Combinatorial curve reconstruction only works for
simplified geometry.




Open problems

* Build a level-set based segmentation algorithm
that uses surfel data.

% Clean up the surfel data (Bayesian tricks)




Reconstruction




Reconstruction

* Assume segmentation problem is approximately
solved.

* Obvious idea: compute Fourier transform of
discontinuities, subtract off, leaving only smooth
part of function.

* Then manually draw discontinuities back.




Am$¢oximate Ediges

- :
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-

0.2 Approxinméte smooth dOmponent 0.8




Fourier Extension

* Best approximation to low frequency data:

ﬁmeas (k)

* High frequency data missing, but we can
approximate:

M—1 M—1
1

w0 = Y i [ Ok




Fourier Extension

% Smooth Transition between them to avoid
artifacts:

ﬁreconstructed (k)




Fourier eExtension

1 0 Filtered DFT
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Fourier eExtension

1o Fourier-extended DFT
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Conclusion

* The wavefront of an image has more information
than it’s singular support

% Surfels can be extracted directly from raw data
* Effectively segments and reconstructs phantoms

* Still needed: good geometric algorithms for surfel
reconstruction




