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Quantum Mechanics - consensus




Wavefunction

State of the universe

w(a?l,...,Q?N,f)

position of ¢’th particle

time




Probability Theory

Probability distribution of particle configurations

O(zy,. .., 2N, t)|°dey ... dxy




—volution

10 = H1p

Schrodinger Equation




Physical Facts

e Suppose we allow the wavefunction evolves to a “split” state

W(x, T) = VAp(x — L) + V1 — Xp(z + L)

¢ Meaning of this wavefunction:

particle near x = L

particle near x = —L
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Physical Facts

¢ |n the absence of measurement, interference effects are observed.

e Split, recombine than measure:

P(x) = |p1(z)]* + [p2(x)|* H2Ro1 () P2 ()

e Split, measure, recombine, then measure again:  interference

P(x) = |61 (2)]? + |6a(2) ferm




Copenhagen Interpretation and Wave Collapse

“Textbook Quantum Mechanics”




How to predict outcome of experiments

* “Prepare” initial wavefunction.

W(z,0) = VAp(z — L) + V1 — Ap(xz + L)

e Allow it to evolve under Schrodinger equation.

e “Measure” the position of the particle.




How to predict outcome of experiments

VAp(z — L) + V1 — \g(x + L)

probability = A probability =1 — A
measurement




Problems with this interpretation

e \Why do certain states of the universe constitute a measurement?

e \Why are measurements special?

e Are there experiments which are not measurements?




Are all wavefunctions possible”

> + |>




Decoherence



Dynamics in configuration space

Configuration space is really big.

Many particles moving a small distance adds up.




Measurements are not special

¢ Between measurements, the system remains on a low-dimensional
submanifold of configuration space.

* Measurements are interactions in which many degrees of freedom become
relevant.

e After measurement, different states are a distance O(\/ N ) apart. This
Implies no interference, since:
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A realistic example




The measurement process

e \Want to measure the position of
a quantum particle.

e Measurement apparatus is a
many-body quantum fluid
(BEC), which interacts with
particle.

¢ Use conventional methods to
measure position of the splash.




The measurement process

e \Want to measure the position of
a quantum particle.

e Measurement apparatus is a
many-body quantum fluid
(BEC), which interacts with
particle.

¢ Use conventional methods to
measure position of the splash.

e particle

S here.




Body Schrodinger equation

~A, -
_|_

2M 2m

Position of particle to be measured
Position of 7-th fluid particle
Interaction between particle and fluid

Internal fluid interaction




Hydrodynamic Formulation




Multiconfiguration Reduction

e Many-Body Schrodinger equation is hard. Solution: derive reduced equation.

e Reduced variables p(x,y1,1), vz (2, y1,t) and v, (x, y1,1t)

N
H :0(337 ?jjv t)
j=1

U:E L ij Uy(xmylvt)a"'




Derivation of reduced eguation

(015:0(337 gjv t) -




Derivation of reduced eguation

(815:0(337 gj? t) -

We will reduce this




Derivation of reduced eguation

e Equation for velocities:




Derivation of reduced eguation

e Equation for velocities:

2

—1




Mean field for velocity

¢ \We need not consider a general point in configuration space, only typical
ones.

e Probability distribution of fluid particle:
p(ﬂ?, Yijs t)
dy;

f ,O(QL’, Yjs t)dyj

e Central limit theorem:

N
X 9 7t 9 7td
vx(x,yj,t) R (N— 1)fv (aj Y ),0(33 Y ) Y

- | p(z,y,t)dy

7=




Mean Field for Potential

ZVN:I;—yJ + = ZVN

Z#J
Dey/p(z
M~/ p(a

e Similar tricks can be used for the potential:

[V N (y1 — y)p(x,y, t)dy
[ p(z,y,t)dy

> Vi —y;) = (N = 1)

j#1




Probably Approximately Correct

e How accurate is this?

e Mcdiarmid’s inequality. For a vector of i.i.d. variables, if

SuAp ‘f(xla R 7wi—17$iaxi+laxl\7> - f(xlv R 7xi—17xi7j}i—|—1vajN)| <C
r,T;

¢ then:

PS@) - BF@)]| > ) < 200 (- e )




Probably Approximately Correct

¢ Implication:

[VN(z —y)p(z,y)dy
[ p(z,y)dy

<5 ( 2¢* N )
< 2exp
VY (2)]] Lo

| > Ne

P \ZVpN(f—yj)—(N—l)

e The probability distribution is w.r.t. conditional distribution of fluid particle:

- plz,y)
PO = T oo y)dy




Y-indepence of equations

e Equations depend (to order O(N)) not on ., (51;7 Y, t) but on it’s expected
value:

| ez, ) p(z, y, t)dy’dgl]J

Opp(x,y,t) + (N = 1)(Vy - p(2, 9,1 u [ p(z,y', t)dy’

N —
+ ( p(x,y,t fpxytdy

'CB Y, t 77$ Y, t (ZE yat)ﬁy($7yat)] =0

2 t)p d
v, fv z,y, t)p(z, v, )ydle




Y-indepence of equations

e Equations depend (to order O(N)) not on ., (x, Y, t) but on it’s expected
value:

J V(@ y' )o@, ', t)dy’
| p(z,y', t)dy’

Z 8t6x(x7gj7t) T (N — 1)[{

Jj=1 L

D’ Vmﬁx(aja gja t)

N
Vi s Vi
=3 () - v

Jj=1




Partial Y-indepence of equations

e Equations depend (to order O(N)) not on ., (Qj7 Y, t) but on it’s expected
value.

¢ \We can therefore consider expected value of x-velocity a reduced variable:

. vz (x,y', ) p(x,y, t)dy’
%(x’t):(N_l)fv (2,9, t)p(z, y', t)dy
) p(z,y' t)dy’

e Derive equation for this reduced variable by multiplying velocity equation by
probability distribution, and integrate by parts.




Plug and chug

Uy (x,y,t) + ’5};(33, t) - Vaptz(z,y,t) + Uy(x,y,t) - VyUp(z,y,1)
_ Veyng oy Vs App(zy,t) Ve Ayp'2(z,y,1)
M P ' M2 pl/2(x,y,t) Mm  pl/2(z,y,t)
2(N = )V, Vop'P(a,y,t) [ p (2,9, t)Vap' P (z, ¢/, t)dy’

M? p'/2(x,y, 1) J o,y t)dy"




Plug and chug

= Oy Up(, 1) + Up(2,t) - Vatu(z, t)

X (8tf(:1:,y,t) + [Oe(,t) - Vo f (2,9, 0)] + [Vy - Ty (2, y, 1) + Ty (2, y,t) - V.yf(a:,y,t)]> dy
= Oy Up (2, 1) + Vp(,t) - Votp(z, 1)




Plug and chug

N N
ZZVIPI/Q(:Eagjat) ' vl‘pl/Q(:Bagk:t) H pl/z(mag’lat)

j=1k#j I#5,k

1/2 _'t) . V:LPI/Q(TU gktt




Plug and chug




Reduced Equations

» One more substitution: p(,y,t) = PYN (2,t) f(z,y, ).
° P(x, t) -- Probability distribution of particle position

o f(:z:, Y, t) -- Fluid distribution assuming particle is at x.




Reduced Equations

Oy P(xz,t) + V- [0y (x,t)P(az t)

(aﬂ?x(x, £) + Ty, 1) - w’?x(m,t)) __ W —M1)vx / V(z —y) + V,(z,y,8)] fz,y,t)dy

0,0y (,y,t) + Uy, 1) - Vb, (x,y, 1) + Ty (z,9,t) - V, 0, (x, y,1)

\V v v
= -2V (@ —y)+ (N - 1)/VSN(y —y)f (g, )y’ — V(1)

™m m




Scaling

e \Work on finite box with fixed particle density, let box get bigger.

N/|A| = po, A T R°

e Scale particle and two-body fluid force with N:

M ~MN, VN(y—9y)=N'Vi(y—1vy)

e \With this scaling, a long calculation shows that X-components of quantum
pressure also vanish.

e Scaling reasonable: physical examples have M=235 or M=720, m=4.




Scaling

O, P(x,t) + Vg - [Uy(x, t)P(z,t)
Ocf (x,y,t) + Up(,t) - Vo f(z,y,t) + Vy - [Uy(2,y,1) f(,y,1)

~

(O 1) + T (2. 1) - V(1)) = —— % / V(e —y)f(z,y. t)dy

atvy(aj Y, t) _|_

V Vx—




Bohmian Coordinates

e Equation of characteristics:

"(z,1)
q(,0)

e Result along characteristic:

Ot f(q(x,t),y,t) +Vy - [f(q,y,t)Uy(q,y,t)| = O

atgy(qa Y, t) -+ 27y(Q7 Y, t) ) vyﬁy((b Y, t)

Vo t) o)+ [ Vily = )f @y 0y = T2V a0

(') = 7 [ Viaat) - ) falet). .0y




—quivalent Schrodinger Equation

e Equivalent to NLS coupled to a classical particle.

D (1) = | 3 By + Vi = alat) + [ Vily =)V Oy | Byt

Vy

q”(wvt) — _M V(y_Q(xvt))‘\Ij(yvt)de




Dynamics: Friction and stopping




Friction by Cerenkov Radiation

e Particle moves in fluid, and generates a wake behind it. Loss of energy to
wake slows the particle down, and is a frictional force.

e |f the nonlinear forces are zero, we can prove rigorously that the particle stops
INn the absence of nonlinear fluid forces. Numerical results confirm result is
true for nonlinear fluids.

e Decay rate:

¢ (z, 1)
Hvyf(mayvt) o vyf(xayat — OO)HL3
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Numerical Results




Numerical results

Particle trajectory as a function of time.

e Particle eventually stops, but
oscillates around it’s stopping
point.

e Oscillation frequency and
decay rate can be calculated
(to leading order) by Laplace
transforms.




Attractive interactions

* The mass held by an attractive potential will grow without bound, unless
arrested by a repulsive nonlinearity.

e Regardless of M, the particle combined with the cloud of particles it attracts

willbe O(N)-

e Semiclassical dynamics are achieved regardless of the mass of the particle!




X1e-54+9.9999%e-1

Numerical Results




Key Ideas of proof

* Write equation for q’(a;', t) to leading order as an linear integral equation
(which is history dependent):

t
¢"(z,t) = —/ K(t,s)q (x,s)ds + remainder
0

M

iA(t—s)/2m
K(ts) — zﬂ%@yzwy)re O v<y>>

—A/2m + V(y)

/
e Use dispersive estimates to show that 4 (377 t) vanishes, and show remainder
does not cause problems.

e Transients appear to leading order in this framework. They can be calculated
by dropping the remainder, taking the Laplace transform and searching for
poles.




Decoherence



3ringing it back to the wavetunction

e Fix an initial state for the particle, with L larger than the stopping distance.

do(z) = VAd(z — L) + V1 — Ap(x + L)

¢ |nitial wavefunction:

o, ) = d0(@) [ xol)




3ringing it back to the wavetunction

¢ Final wavefunction:
¢(3? gatNOO)
= VAd(z — L) ono — L)+ V1—A¢(z+ L) ono (y; + L)

e A “schrodingers cat” wavefunction.




A model for measurement

* Measurement consists of determining the state of the macroscopic system, in
this case a vector y (or at least some function F(y) ).

* From gwe infer a value for x. But with what statistical significance can we do
this?

e This framework covers the instrumentalist picture, Bohmian Mechanics, and
most particle-based ontologies.




Statistical Significance

e Consider measurement process: given knowledge of ﬁ determine value of x.
With what statistical significance can we answer this question?

e Partition configuration space R3N — ()1 Uy and usetherule x &~ — L
for ¢f € 21 and vice versa.

* Confidence level: Py (1 € (1) 4+ Po(y € a) . where

d Py

d Ps




Statistical Significance

* Choose ()q, )y so that Pl(g’e Ql) — PQ(gE Qz) — p/Q to get

an unbiased estimator.

® This gives best possible decision procedure.

—

* In the event we know only F(y) rather than 4/ , our statistical confidence
can only go down.

o F(y") models deterministic experimental errors, e.g. differences in ?7 which
are experimentally invisible.




Bounds on the interference;

* Interference term: 2R H Xoo(y; + L)dy H Xoo(y; — L)
71=1 71=1

HXoo Yj ‘|_L HXoo

e Bounds:

+|| ono yj + L)lla. |l ono = L)lle

p/21 + 14/p/2 = O(V/statistical confidence)




Statistical Significance and Interference

e The p-value of the experiment provides an upper bound on the size of the
interference term.

e Good experiments (statistically significant ones) destroy interference.

e Experimental prediction: “fractional measurements” are possible. A “fractional
measurement” is an experiment with large p-values which only partially
destroys interference.




The One-Pixel Camera

e Consider an experimental measurement consisting of counting the number of
fluid particles in a fixed region (the “pixel”).

e |f splash is contained within pixel, average number of fluid particles observed
Is different than if not. This provides a means of determining whether the
particle is within the pixel.

e Statistical significance: p=0.1% requires splash to involve 47 particles for
repulsive particle previously simulated.

e Thus, 47 fluid particles is sufficient to reduce interference to about 5% of the
total wavefunction.




The Wave Collapse
Approximation

e Suppose we make a
measurement, and the particle
IS observed to be on the right.

e To simplify calculations, set left
wavepacket equal to zero.

e This is computationally simpler
than tracking both
wavepackets, and equally
accurate.
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The Wave Collapse
Approximation

e Suppose we make a
measurement, and the particle
IS observed to be on the right.

e To simplify calculations, set left
wavepacket equal to zero.

e This is computationally simpler
than tracking both
wavepackets, and equally
accurate.
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Interpreting the results

¢ Instrumentalist picture: particles exist at the moment of measurement,
distributed according to the probability distribution. Statistical distribution of
configurations is consistent with wave collapse, regardless of whether or not
it occurs.

e Bohmian picture: particles exist for all time; in particular the particle we
measure follows the trajectory q(x,t). The wave collapse approximation does
not significantly alter g(x,t).

e GRW/ODbjective (Stochastic) Collapse: No comment.




Conclusion

e Derived multiconfiguration mean field model for qguantum system consisting
of a particle interacting with a Bose gas.

e Reduced model to classical particle coupled to a Bose gas.

e Derived quantum friction, showing that the particle eventually stops.

e Showed that statistical significance of experimental outcomes provides upper
bound on quantum interference.

e Suggested possibilities for fractional measurements.
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