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Quantum Mechanics - consensus



Wavefunction

ψ(x1, . . . , xN , t)
State of the universe

xi = position of i’th particle
t = time



Probability Theory

Probability distribution of particle configurations

|ψ(x1, . . . , xN , t)|2dx1 . . . dxN



Evolution

Schrodinger Equation

i∂tψ = Hψ



Physical Facts

• Suppose we allow the wavefunction evolves to a “split” state

• Meaning of this wavefunction:

ψ(x, T ) =
√

λφ(x− L) +
√

1− λφ(x + L)

particle near x = L with probability λ

particle near x = −L with probability 1− λ

Repeated “measurements” of particle 
position will yield same result



Physical Facts

• In the absence of measurement, interference effects are observed.

• Split, recombine than measure:

• Split, measure, recombine, then measure again:

P (x) = |φ1(x)|2 + |φ2(x)|2 + 2!φ1(x)φ2(x)

P (x) = |φ1(x)|2 + |φ2(x)|2
interference

term



Copenhagen Interpretation and Wave Collapse

“Textbook Quantum Mechanics”



How to predict outcome of experiments

• “Prepare” initial wavefunction.

• Allow it to evolve under Schrodinger equation.

• “Measure” the position of the particle. 

ψ(x, 0) =
√

λφ(x− L) +
√

1− λφ(x + L)



How to predict outcome of experiments

probability = 1− λprobability = λ

φ(x− L) φ(x + L)

√
λφ(x− L) +

√
1− λφ(x + L)

measurement



Problems with this interpretation

• Why do certain states of the universe constitute a measurement?

• Why are measurements special?

• Are there experiments which are not measurements?



Are all wavefunctions possible?

(Not normalized)



Decoherence



Dynamics in configuration space

|(1, 1, . . . , 1)− (0, 0, . . . , 0)| =
√

3N

Configuration space is really big.

Many particles moving a small distance adds up.



Measurements are not special

• Between measurements, the system remains on a low-dimensional 
submanifold of configuration space.

• Measurements are interactions in which many degrees of freedom become 
relevant.

• After measurement, different states are a distance                   apart. This 
implies no interference, since:

O(
√

N)

2!ψ̄1(x)ψ2(x) ≈ 0



An unmeasured 
interaction



An unmeasured 
interaction



The measurement 
process



The measurement 
process

Interaction Switched On



A realistic example



The measurement process

• Want to measure the position of 
a quantum particle.

• Measurement apparatus is a 
many-body quantum fluid 
(BEC), which interacts with 
particle.

• Use conventional methods to 
measure position of the splash.



The measurement process

• Want to measure the position of 
a quantum particle.

• Measurement apparatus is a 
many-body quantum fluid 
(BEC), which interacts with 
particle.

• Use conventional methods to 
measure position of the splash.

The particle
is here.



Many Body Schrodinger equation

x = Position of particle to be measured
yj = Position of j-th fluid particle

V N
P (x− yj) = Interaction between particle and fluid

V N
S (yi − yj) = Internal fluid interaction

ψ0(x, y) = φ(x)
N∏

j=1

χ(yj)

i∂tψ(x, #y, t) =



−∆x

2M
+
−∆y

2m
+

∑

j

V N
p (x− yj) +

1
2

∑

i !=j

V N
s (yi − yj)



ψ(x, #y, t)



Hydrodynamic Formulation

Derivation of the Multiconfiguration Gross
Pitaevskii Equation

July 10, 2008

Start from the many body Schrodinger equation in the hydrodynamic for-
mulation:

∂tρ(x, "y, t) +∇ · [ρ(x, "y, t)v(x, "y, t)] = 0 (1a)

∂t"v(x, "y, t) + "v(x, "y, t) ·∇"v(x, "y, t) = −∇̃V (x, "y) (1b)

with

V (x, "y) =
N∑

j=1

V N
p (x− "yj) +

1
2

∑

i !=j

V N
s ("yi − "yj)

+
∆x

√
ρ(x, "y, t)

M
√

ρ(x, "y, t)
+

∆y

√
ρ(x, "y, t)

m
√

ρ(x, "y, t)
(1c)

The operator ∇̃ = (M−1∇x,m−1∇!y1 , . . . ,m
−1∇!yN ), with M the mass of the

heavy particle and m the mass of the light particle.

1 Ansatz

We substitute into (1) the following ansatz:

ρ(x, "y, t) =
N∏

j=1

ρ(x, "yj , t) (2a)

"v(x, "y, t) =
N∑

j=1

Pj"v(x, "yj , t) (2b)

(2c)

where "v : R3
x×R3

y×R+ → R3
x×R3

y, and Pj is a matrix mapping the x component
of "v to the x component of "v and the y component of "v to the "yj component of
"v. To simplify notation, let "vx(x, y, t) be the x component of the velocity, and
"vy(x, y, t) be the y component of the velocity.
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1

∇̃ = (M−1∇x,m−1∇!y1 , . . . ,m
−1∇!yN ), with

heavy particle and the mass of the light particle.

ρ(x, "y, t) = |ψ(x, "y, t)|2



Multiconfiguration Reduction

• Many-Body Schrodinger equation is hard. Solution: derive reduced equation.

• Reduced variables 
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!v(x, , t) =




N∑

j=1

vx(x, yj , t), vy(x, y1, t), . . . , vy(x, yN , t)





ρ(x, y1, t), vx(x, y1, t) and vy(x, y1, t)



Derivation of reduced equation

The density equation takes the form:

N∑

j=1

(


∏

k !=j

ρ(x, "yk, t)



 ∂tρ(x, "yj , t)

+




∏

k !=j

ρ(x, "yk, t)



 [∇x · ρ(x, "yj , t)]

[
N∑

l=1

"vx(x, "yl, t)

]

+
1
N




∏

k !=j

ρ(x, "yk, t)



 ρ(x, "yj , t)∇x ·
[

N∑

l=1

"vx(x, "yl, t)

]

+




∏

k !=j

ρ(x, "yk, t)



∇yj · [ρ(x, "yj , t)"vy(x, "yj , t)]

)
= 0 (3)

or factoring out the product term and considering each individual term of the
sum separately,

(
∂tρ(x, "yj , t) +

[
ρ(x, "yj , t)

N∑

l=1

"vx(x, "yl, t)

]
∇x · ρ(x, "yj , t)

+
1
N

ρ(x, "yj , t)∇x ·
[
ρ(x, "yj , t)

N∑

l=1

"vx(x, "yl, t)

]

+∇yj · [ρ(x, "yj , t)"vy(x, "yj , t)]

)
= 0 (4)

The velocity equation can be rewritten as follows:

N∑

j=1

[
∂t"vx(x, "yj , t) +

(
N∑

k=1

"vx(x, "yk, t)

)
·∇x"vx(x, "yj , t)

+ "vy(x, "yj , t) ·∇yj"vx(x, "yj , t)

]
= −∇x

M
V (x, "y) (5a)

∂t"vy(x, "yj , t) +

(
N∑

k=1

"vx(x, "yk, t)

)
·∇x"vy(x, "yj , t)

+ "vy(x, "yj , t) ·∇y"vy(x, "yj , t) = −
∇!yj

m
V (x, "y) (5b)

2 Mean Field Approximation

We will derive a mean field approximation which is valid in the regions of config-
uration space where ρ(x, "y, t) lives. As a calculation tool, we consider a typical
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We will reduce this
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• Equation for velocities:
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• Equation for velocities:



Mean field for velocity

• We need not consider a general point in configuration space, only typical 
ones. 

• Probability distribution of fluid particle: 

• Central limit theorem:

ρ(x, yj , t)∫
ρ(x, yj , t)dyj

dyj

N∑

j=2

vx(x, yj , t)→ (N − 1)
∫

vx(x, y, t)ρ(x, y, t)dy∫
ρ(x, y, t)dy



Mean Field for Potential

• Similar tricks can be used for the potential:
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Pitaevskii Equation

July 10, 2008
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V (x, "y) =
N∑

j=1

V N
p (x− "yj) +

1
2

∑

i !=j

V N
s ("yi − "yj)

+
∆x

√
ρ(x, "y, t)

M
√

ρ(x, "y, t)
+

∆y

√
ρ(x, "y, t)

m
√

ρ(x, "y, t)
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−1∇!yN ), with M the mass of the

heavy particle and m the mass of the light particle.
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ρ(x, "y, t) =
N∏

j=1

ρ(x, "yj , t) (2a)

"v(x, "y, t) =
N∑

j=1

Pj"v(x, "yj , t) (2b)

(2c)

where "v : R3
x×R3

y×R+ → R3
x×R3

y, and Pj is a matrix mapping the x component
of "v to the x component of "v and the y component of "v to the "yj component of
"v. To simplify notation, let "vx(x, y, t) be the x component of the velocity, and
"vy(x, y, t) be the y component of the velocity.

1

∑

j !=1

V N
s (y1 − yj)→ (N − 1)

∫
V N

s (y1 − y)ρ(x, y, t)dy∫
ρ(x, y, t)dy



Probably Approximately Correct

• How accurate is this?

• Mcdiarmid’s inequality. For a vector of i.i.d. variables, if

• then:

sup
x,x̂i

|f(x1, . . . , xi−1, xi, xi+1, xN )− f(x1, . . . , xi−1, xi, x̂i+1, xN )| < C

P (|f(!x)− E[f(!x)]| > ε) ≤ 2 exp
(
− 2ε2

NC2

)



Probably Approximately Correct

• Implication:

• The probability distribution is w.r.t. conditional distribution of fluid particle:

P



|
N∑

j=1

V N
p (x− yj)− (N − 1)

∫
V N

p (x− y)ρ(x, y)dy∫
ρ(x, y)dy

| ≥ Nε





P (y) =
ρ(x, y)∫
ρ(x, y)dy

≤ 2 exp
(
− 2ε2N

||V N
p (x)||L∞

)



Y-indepence of equations

• Equations depend (to order O(N)) not on                      but on it’s expected 
value: 

vx(x, y, t)

coordinate, (x, !y) with !yl (l ≥ 2) being distributed according to the normalized
probability distribution:

dP (!yl) =
∫

ρ(x, !y1, . . . , !yl, . . . , !yN )d!y1, . . . , d!yl−1d!yl+1 . . . d!yN

=
ρ(x, !yl, t)∫
ρ(x, y′, t)dy′

d!yl (6)

We say (!y2, . . . , !yN ) is ρ-typical if each !y2 is distributed according to this dis-
tribution.

At this step it is crucial to notice that we used the fact that !yj and !yk are
independent random variables for fixed x and j "= k.

Now consider the density equation (4) at a point (x, !y1, !y2, . . . , !yN ) with
ρ-typical (!y2, . . . , !yN ). For simplicity of notation, let y = !y1. Note that:

N∑

l=2

!vx(x, !yl, t) ≈ (N − 1)
∫

!vx(x, y′, t)dP (y′)

= (N − 1)
∫

!vx(x, y′, t)ρ(x, y′, t)dy′∫
ρ(x, y′, t)dy′

Substituting this into (4) and considering only one term in the sum yields:

∂tρ(x, y, t) + (N − 1)(∇x · ρ(x, y, t))
[∫

!vx(x, y′, t)ρ(x, y′, t)dy′∫
ρ(x, y′, t)dy′

d!yl

]

+ (N − 1)ρ(x, y, t)∇x ·
[∫

!vx(x, y′, t)ρ(x, y′, t)dy′∫
ρ(x, y′, t)dy′

d!yl

]

+∇x · [ρ(x, y, t)!v(x, y, t)] +∇y[ρ(x, y, t)!vy(x, y, t)] = 0 (7)

Thus, ρ(x, y, t) obeys a mean field equation depending only on itself and on
!v(x, y, t). We now derive a similar equation for !v(x, y, t). By the same argument
as above, the equation for !vx(x, y, t) becomes:

N∑

j=1

∂t!vx(x, !yj , t) + (N − 1)
[∫

!vx(x, y′, t)ρ(x, y′, t)dy′∫
ρ(x, y′, t)dy′

]
·∇x!vx(x, !yj , t)

+ !vx(x, !yj , t) ·∇x!vx(x, !yj , t) + !vy(x, !yj , t) ·∇y!vx(x, !yj , t) = −∇xV (x, !y) (8)

//INSERT NOTE ABOUT MCDIARMID INEQUALITY TO MAKE THIS
MORE RIGOROUSY//
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Y-indepence of equations

• Equations depend (to order O(N)) not on                      but on it’s expected 
value: 

vx(x, y, t)Thus, (4) becomes (since ∇xV N
s (!yi − !yj) = 0):

N∑

j=1

[
∂t!vx(x, !yj , t) + (N − 1)

[∫
!vx(x, y′, t)ρ(x, y′, t)dy′

∫
ρ(x, y′, t)dy′

]
·∇x!vx(x, !yj , t)

+ !vx(x, !yj , t) ·∇x!vx(x, !yj , t) + !vy(x, !yj , t) ·∇y!vx(x, !yj , t)

]

=
N∑

j=1

(
−∇x

M
V N

p (x− !yj)
)
− ∇x

M
Vq (9)

In (9), Vq is the quantum pressure term.

3 Quantum Pressure

The only quantity left to evaluate is the Laplacian term:

∆x

√
ρ(x, !y, t) = ∆x

N∏

j=1

ρ1/2(x, !yj , t)

= ∇x·




N∑

j=1

∇xρ1/2(x, !yj , t)
∏

k "=j

ρ1/2(x, !yk, t)



 =




N∑

j=1

∇2
xρ1/2(x, !yj , t)

∏

k "=j

ρ1/2(x, !yk, t)





+
N∑

j=1

N∑

k "=j

∇xρ1/2(x, !yj , t) ·∇xρ1/2(x, !yk, t)
∏

l "=j,k

ρ1/2(x, !yl, t) (10)

We turn our attention to the sum on the last line of (10):

N∑

j=1

N∑

k "=j

∇xρ1/2(x, !yj , t) ·∇xρ1/2(x, !yk, t)
∏

l "=j,k

ρ1/2(x, !yl, t)

=
N∑

j=1

2∇xρ1/2(x, !yj , t) ·




N∑

k "=j

∇xρ1/2(x, !yk, t)
ρ1/2(x, !y1, t)

∏

l "=j

ρ1/2(x, !yl, t)





=
N∑

j=1

2∇xρ1/2(x, !yj , t) ·




N∑

k "=j

∇xρ1/2(x, !yk, t)
ρ1/2(x, !y1, t)




∏

l "=j

ρ1/2(x, !yl, t) (11)
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Partial Y-indepence of equations

• Equations depend (to order O(N)) not on                      but on it’s expected 
value.

• We can therefore consider expected value of x-velocity a reduced variable:

• Derive equation for this reduced variable by multiplying velocity equation by 
probability distribution, and integrate by parts.

vx(x, y, t)

ponent. The derivation of this is similar to what we just did; the result is:

∂t"vy(x, y, t) + (N − 1)
[∫

"vx(x, y′, t)ρ(x, y′, t)dy′
∫

ρ(x, y′, t)dy′

]
·∇x"vy(x, y, t)

+ "vx(x, y, t) ·∇x"vy(x, y, t) + "vy(x, y, t) ·∇y"vy(x, y, t)

= −∇y

m
V N

p (x− y) +
∇y

m
(N − 1)

∫
V N

s (y − y′)ρ(x, y′, t)dy′
∫

ρ(x, y′′, t)dy′′

− ∇y

Mm

∆xρ1/2(x, y, t)
ρ1/2(x, y, t)

− ∇y

m2

∆yρ1/2(x, y, t)
ρ1/2(x, y, t)

− ∇y

mM

∇xρ1/2(x, y, t)
ρ1/2(x, y, t)

· 2(N − 1)
∫

ρ1/2(x, y′, t)∇xρ1/2(x, y′, t)dy′
∫

ρ(x, y′′, t)dy′′

(17)

Thus, the equations (7), (16) and (23) are the equations we wish to consider.

Remark 4.1 It is of crucial importance to realize that motion in the x-direction
is driven by the advection term,

(N − 1)
[∫

"vx(x, y′, t)ρ(x, y′, t)dy′
∫

ρ(x, y′, t)dy′

]
·∇x"vy(x, y, t)

which is y-independent. The normal "vx(x, y, t) ·∇x(...) advection term is of N -
times smaller; in the limit of many particles, it will vanish. This term represents
quantum mechanical mangling, or communication between the “many worlds”.

5 Quasi-classical equations

Note that in the MCGP, the mangling terms "vx(x, y, t) ·∇x( . . . ) are a factor
of N smaller than the average advection terms,

∫
"vx(x, y′, t)ρ(x, y′, t)dy′

∫
ρ(x, y′, t)dy′ ·∇x( . . . ).

To solve the MCGP, we can drop these small terms. Let "̃vx(x, t) denote the
average velocity, i.e.:

"̃vx(x, t) = (N − 1)
∫

"vx(x, y′, t)ρ(x, y′, t)dy′
∫

ρ(x, y′, t)dy′ (18)

Now substitute ρ(x, y, t) = P 1/N (x, t)f(x, y, t). Differentiating the density equa-
tion (7) yields:

[∂tP (x, t)1/N ]f(x, y, t) + P (x, t)1/N [∂tf(x, y, t)]

+
1
N

[∇x · "̃vx(x, t)]P (x, t)1/Nf(x, y, t) + "̃vx(x, t) · [∇xP (x, t)1/N ]f(x, y, t)

+ "̃vx(x, t) · [∇xf(x, y, t)]P (x, t)1/N + P (x, t)1/N∇y[f(x, y, t)"vy(x, y, t)] = 0
(19)

7
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Reduced Equations

• One more substitution:  

•                   -- Probability distribution of particle position

•                     -- Fluid distribution assuming particle is at x.

• Note: 

ponent. The derivation of this is similar to what we just did; the result is:

∂t"vy(x, y, t) + (N − 1)
[∫

"vx(x, y′, t)ρ(x, y′, t)dy′
∫

ρ(x, y′, t)dy′

]
·∇x"vy(x, y, t)

+ "vx(x, y, t) ·∇x"vy(x, y, t) + "vy(x, y, t) ·∇y"vy(x, y, t)

= −∇y

m
V N

p (x− y) +
∇y

m
(N − 1)

∫
V N

s (y − y′)ρ(x, y′, t)dy′
∫

ρ(x, y′′, t)dy′′

− ∇y

Mm

∆xρ1/2(x, y, t)
ρ1/2(x, y, t)

− ∇y

m2

∆yρ1/2(x, y, t)
ρ1/2(x, y, t)

− ∇y

mM

∇xρ1/2(x, y, t)
ρ1/2(x, y, t)

· 2(N − 1)
∫

ρ1/2(x, y′, t)∇xρ1/2(x, y′, t)dy′
∫

ρ(x, y′′, t)dy′′

(17)

Thus, the equations (7), (16) and (23) are the equations we wish to consider.

Remark 4.1 It is of crucial importance to realize that motion in the x-direction
is driven by the advection term,

(N − 1)
[∫

"vx(x, y′, t)ρ(x, y′, t)dy′
∫

ρ(x, y′, t)dy′

]
·∇x"vy(x, y, t)

which is y-independent. The normal "vx(x, y, t) ·∇x(...) advection term is of N -
times smaller; in the limit of many particles, it will vanish. This term represents
quantum mechanical mangling, or communication between the “many worlds”.

5 Quasi-classical equations

Note that in the MCGP, the mangling terms "vx(x, y, t) ·∇x( . . . ) are a factor
of N smaller than the average advection terms,

∫
"vx(x, y′, t)ρ(x, y′, t)dy′

∫
ρ(x, y′, t)dy′ ·∇x( . . . ).

To solve the MCGP, we can drop these small terms. Let "̃vx(x, t) denote the
average velocity, i.e.:

"̃vx(x, t) = (N − 1)
∫

"vx(x, y′, t)ρ(x, y′, t)dy′
∫

ρ(x, y′, t)dy′ (18)

Now substitute ρ(x, y, t) = P 1/N (x, t)f(x, y, t). Differentiating the density equa-
tion (7) yields:

[∂tP (x, t)1/N ]f(x, y, t) + P (x, t)1/N [∂tf(x, y, t)]

+
1
N

[∇x · "̃vx(x, t)]P (x, t)1/Nf(x, y, t) + "̃vx(x, t) · [∇xP (x, t)1/N ]f(x, y, t)

+ "̃vx(x, t) · [∇xf(x, y, t)]P (x, t)1/N + P (x, t)1/N∇y[f(x, y, t)"vy(x, y, t)] = 0
(19)

7

P (x, t)

f(x, y, t)

f(x, y, t) =
ρ(x, y, t)∫
ρ(x, y, t)dy



Reduced Equations

If we separate this, we obtain:

1
N

P (x, t)(1−N)/N [∂tP (x, t) + "̃vx(x, t) ·∇xP (x, t)]

+
1
N

P (x, t)1/N [∇x · "̃vx(x, t)] = 0

∂tf(x, y, t) + "̃vx(x, t) ·∇xf(x, y, t) +∇y[f(x, y, t)"vy(x, y, t)] = 0

or (simplifying)

∂tP (x, t) +∇x · ["̃vx(x, t)P (x, t)] = 0 (20a)

∂tf(x, y, t) + "̃vx(x, t) ·∇xf(x, y, t) +∇y · ["vy(x, y, t)f(x, y, t)] = 0(20b)

By further assuming that ‖f(x, y, 0)‖L2(R,dy) = 1 for all x, then ‖f(x, y, t)‖L2(R,dy) =
1 for all t.

Now, consider the x-component of the velocity equation:

∂t"vx(x, y, t) + "̃vx(x, t) ·∇x"vx(x, y, t) + "vy(x, y, t) ·∇y"vx(x, y, t)

= −∇x

M
V N

p (x− y)− ∇x

M2

∆xρ1/2(x, y, t)
ρ1/2(x, y, t)

− ∇x

Mm

∆yρ1/2(x, y, t)
ρ1/2(x, y, t)

− 2(N − 1)∇x

M2

∇xρ1/2(x, y, t)
ρ1/2(x, y, t)

·
∫

ρ1/2(x, y′, t)∇xρ1/2(x, y′, t)dy′∫
ρ(x, y′′, t)dy′′

(21)

We now wish to multiply (21) by f(x, y, t) and integrate over y to derive an
equation for "̃vx(x, t). Since "̃vx(x, t) =

∫
"v(x, y, t)f(x, y, t)dy, we find (differenti-

ating under the integral sign) that:
∫

[∂t"vx(x, y, t)]f(x, y, t)dy = ∂t"̃vx(x, t)−
∫

"vx(x, y, t)∂tf(x, y, t)]dy

∫
["̃vx(x, t) ·∇x"vx(x, y, t)]f(x, y, t)dy = "̃vx(x, t) ·∇x"̃vx(x, t)

−
∫

"vx(x, y, t)["̃vx(x, t) ·∇xf(x, y, t)]dy

∫
["vy(x, y, t) ·∇y]f(x, y, t)dy =

∫
"vy(x, y, t) ·∇y["vx(x, y, t)f(x, y, t)]dy

−
∫

"vx["vy(x, y, t) ·∇yf(x, y, t)]dy

= −
∫

"vx(x, y, t)[∇y · "vy(x, y, t) + "vy(x, y, t) ·∇yf(x, y, t)]dy

8

(The last equality follows by integration by parts.)
Adding these equations together shows:

∫
[∂t"vx(x, y, t) + "̃vx(x, t) ·∇x"vx(x, y, t) + "vy(x, y, t) ·∇y"vx(x, y, t)]f(x, y, t)dy

= ∂t"̃vx(x, t) + "̃vx(x, t) ·∇x"̃vx(x, t)

+
∫

"vx(x, y, t)

×
(
∂tf(x, y, t) + ["̃vx(x, t) ·∇xf(x, y, t)] + [∇y · "vy(x, y, t) + "vy(x, y, t) ·∇yf(x, y, t)]

)
dy

= ∂t"̃vx(x, t) + "̃vx(x, t) ·∇x"̃vx(x, t)

The term inside the integral on the second to last line is zero by (20b). Thus,
we find that multiplying (21) by f(x, y, t) and integrating over y yields:

(
∂t"̃vx(x, t) + "̃vx(x, t) ·∇x"̃vx(x, t)

)
= − (N − 1)∇x

M

∫
[V (x− y) + Vq(x, y, t)] f(x, y, t)dy

(22)

And lastly the equation for the y-velocity:

∂t"vy(x, y, t) + "̃vx(x, t) ·∇x"vy(x, y, t) + "vy(x, y, t) ·∇y"vy(x, y, t)

= −∇y

m
V N

p (x− y) +
∇y

m
(N − 1)

∫
V N

s (y − y′)f(x, y′, t)dy′ − ∇y

m
Vq(x, y, t)

(23)

Note that we have not dropped the quantum pressure.

6 Measurement as a Statistical Process: A two-
pixel camera

//Avy/Juerg/Michael: How much of this is worth using? This part is certainly
not very detailed, but we can definitely fix it up. It’s mostly basic statistics, my
assumptions are not intrinsic, just there to simplify calculations.//

Of course, we still need an ontology to make sense of these equations. The
ontology we use is the following. We work in the instrumentalist picture (to
avoid holy wars), which says that at some fixed time, the heavy particle has
position which is a random variable with probability density given by:

[∫
ρ(x, "y, t)d"y1 . . . d"yN

]
dx = P (x, t)dx (24a)

Given a particle position x, the probability density of any given fluid particle
is: [∫

ρ(x, "y, t)d"y2 . . . d"yN∫
ρ(x, "y, t)d"y1 . . . d"yN

]
dy = f(x, y, t)dy (24b)

9

(The last equality follows by integration by parts.)
Adding these equations together shows:

∫
[∂t"vx(x, y, t) + "̃vx(x, t) ·∇x"vx(x, y, t) + "vy(x, y, t) ·∇y"vx(x, y, t)]f(x, y, t)dy

= ∂t"̃vx(x, t) + "̃vx(x, t) ·∇x"̃vx(x, t)

+
∫

"vx(x, y, t)

×
(
∂tf(x, y, t) + ["̃vx(x, t) ·∇xf(x, y, t)] + [∇y · "vy(x, y, t) + "vy(x, y, t) ·∇yf(x, y, t)]

)
dy

= ∂t"̃vx(x, t) + "̃vx(x, t) ·∇x"̃vx(x, t)

The term inside the integral on the second to last line is zero by (20b). Thus,
we find that multiplying (21) by f(x, y, t) and integrating over y yields:

(
∂t"̃vx(x, t) + "̃vx(x, t) ·∇x"̃vx(x, t)

)
= − (N − 1)∇x

M

∫
[V (x− y) + Vq(x, y, t)] f(x, y, t)dy

(22)

And lastly the equation for the y-velocity:

∂t"vy(x, y, t) + "̃vx(x, t) ·∇x"vy(x, y, t) + "vy(x, y, t) ·∇y"vy(x, y, t)

= −∇y

m
V N

p (x− y) +
∇y

m
(N − 1)

∫
V N

s (y − y′)f(x, y′, t)dy′ − ∇y

m
Vq(x, y, t)

(23)

Note that we have not dropped the quantum pressure.

6 Measurement as a Statistical Process: A two-
pixel camera

//Avy/Juerg/Michael: How much of this is worth using? This part is certainly
not very detailed, but we can definitely fix it up. It’s mostly basic statistics, my
assumptions are not intrinsic, just there to simplify calculations.//

Of course, we still need an ontology to make sense of these equations. The
ontology we use is the following. We work in the instrumentalist picture (to
avoid holy wars), which says that at some fixed time, the heavy particle has
position which is a random variable with probability density given by:

[∫
ρ(x, "y, t)d"y1 . . . d"yN

]
dx = P (x, t)dx (24a)

Given a particle position x, the probability density of any given fluid particle
is: [∫

ρ(x, "y, t)d"y2 . . . d"yN∫
ρ(x, "y, t)d"y1 . . . d"yN

]
dy = f(x, y, t)dy (24b)

9



Scaling

• Work on finite box with fixed particle density, let box get bigger.

• Scale particle and two-body fluid force with N:

• With this scaling, a long calculation shows that X-components of quantum 
pressure also vanish. 

• Scaling reasonable: physical examples have M=235 or M=720, m=4.

N/|Λ| = ρ0,Λ ↑ R3

M ∼MN, V N
s (y − y′) = N−1Vs(y − y′)



Scaling

If we separate this, we obtain:

1
N

P (x, t)(1−N)/N [∂tP (x, t) + "̃vx(x, t) ·∇xP (x, t)]

+
1
N

P (x, t)1/N [∇x · "̃vx(x, t)] = 0

∂tf(x, y, t) + "̃vx(x, t) ·∇xf(x, y, t) +∇y[f(x, y, t)"vy(x, y, t)] = 0

or (simplifying)

∂tP (x, t) +∇x · ["̃vx(x, t)P (x, t)] = 0 (20a)

∂tf(x, y, t) + "̃vx(x, t) ·∇xf(x, y, t) +∇y · ["vy(x, y, t)f(x, y, t)] = 0(20b)

By further assuming that ‖f(x, y, 0)‖L2(R,dy) = 1 for all x, then ‖f(x, y, t)‖L2(R,dy) =
1 for all t.

Now, consider the x-component of the velocity equation:

∂t"vx(x, y, t) + "̃vx(x, t) ·∇x"vx(x, y, t) + "vy(x, y, t) ·∇y"vx(x, y, t)

= −∇x

M
V N

p (x− y)− ∇x

M2

∆xρ1/2(x, y, t)
ρ1/2(x, y, t)

− ∇x

Mm

∆yρ1/2(x, y, t)
ρ1/2(x, y, t)

− 2(N − 1)∇x

M2

∇xρ1/2(x, y, t)
ρ1/2(x, y, t)

·
∫

ρ1/2(x, y′, t)∇xρ1/2(x, y′, t)dy′∫
ρ(x, y′′, t)dy′′

(21)

We now wish to multiply (21) by f(x, y, t) and integrate over y to derive an
equation for "̃vx(x, t). Since "̃vx(x, t) =

∫
"v(x, y, t)f(x, y, t)dy, we find (differenti-

ating under the integral sign) that:
∫

[∂t"vx(x, y, t)]f(x, y, t)dy = ∂t"̃vx(x, t)−
∫

"vx(x, y, t)∂tf(x, y, t)]dy

∫
["̃vx(x, t) ·∇x"vx(x, y, t)]f(x, y, t)dy = "̃vx(x, t) ·∇x"̃vx(x, t)

−
∫

"vx(x, y, t)["̃vx(x, t) ·∇xf(x, y, t)]dy

∫
["vy(x, y, t) ·∇y]f(x, y, t)dy =

∫
"vy(x, y, t) ·∇y["vx(x, y, t)f(x, y, t)]dy

−
∫

"vx["vy(x, y, t) ·∇yf(x, y, t)]dy

= −
∫

"vx(x, y, t)[∇y · "vy(x, y, t) + "vy(x, y, t) ·∇yf(x, y, t)]dy

8

∂t"vy(x, y, t) + "̃v(x, t) ·∇x"vy(x, y, t) + "vy(x, y, t) ·∇y"vy(x, y, t)

= −∇y

m
V (x− y) +

∇y

m

∫
Vs(y − y′)f(x, y′, t)dy′ − ∇y

m
Vq(x, y, t)

(∂t"̃vx(x, t) + "̃vx(x, t) ·∇x"̃vx(x, t)) = −∇x

M

∫
V (x− y)f(x, y, t)dy



Bohmian Coordinates

• Equation of characteristics:

• Result along characteristic:

q′(x, t) = !̃vx(x, t)
q(x, 0) = x

∂tf(q(x, t), y, t) +∇y · [f(q, y, t)"vy(q, y, t)] = 0

∂t"vy(q, y, t) + "vy(q, y, t) ·∇y"vy(q, y, t)

= −∇y

m
V (q(x, t)− y) +

∫
Vs(y − y′)f(x, y′, t)dy − ∇y

m
Vq(q, y, t)

q′′(x, t) =
−∇y

M

∫
V (q(x, t)− y)f(q(x, t), y, t)dy



Equivalent Schrodinger Equation

• Equivalent to NLS coupled to a classical particle.

q′′(x, t) = −∇y

M

∫
V (y − q(x, t))|Ψ(y, t)|2dy

i∂tΨ(y, t) =
[
−1
2m

∆y + V (y − q(x, t)) +
∫

Vs(y − y′)|Ψ(y′, t)|2dy′
]

Ψ(y, t)



Dynamics: Friction and stopping



Friction by Cerenkov Radiation

• Particle moves in fluid, and generates a wake behind it. Loss of energy to 
wake slows the particle down, and is a frictional force.

• If the nonlinear forces are zero, we can prove rigorously that the particle stops 
in the absence of nonlinear fluid forces.  Numerical results confirm result is 
true for nonlinear fluids. 

• Decay rate: 

|q′(x, t)| ≤ C〈t〉−3/2)
||∇yf(x, y, t)−∇yf(x, y, t = ∞)||L3 ≤ C〈t〉−1/2



Numerical Results Repulsive Potential



Numerical results

• Particle eventually stops, but 
oscillates around it’s stopping 
point.

• Oscillation frequency and 
decay rate can be calculated 
(to leading order) by Laplace 
transforms.



Attractive interactions

• The mass held by an attractive potential will grow without bound, unless 
arrested by a repulsive nonlinearity.

• Regardless of M, the particle combined with the cloud of particles it attracts 
will be              .

• Semiclassical dynamics are achieved regardless of the mass of the particle!

O(N)



Numerical Results Attractive Potential



Key ideas of proof

• Write equation for                to leading order as an linear integral equation 
(which is history dependent):

• Use dispersive estimates to show that               vanishes, and show remainder 
does not cause problems. 

• Transients appear to leading order in this framework. They can be calculated 
by dropping the remainder, taking the Laplace transform and searching for 
poles. 

q′(x, t)

q′′(x, t) = −
∫ t

0
K(t, s)q′(x, s)ds + remainder

K(t, s) =
2ρ0

M
"

〈
∂yzV (y)| ei∆(t−s)/2m∂yz

−∆/2m + V (y)
V (y)

〉

q′(x, t)



Decoherence



Bringing it back to the wavefunction

• Fix an initial state for the particle, with L larger than the stopping distance.

• Initial wavefunction:

φ0(x) =
√

λφ(x− L) +
√

1− λφ(x + L)

ψ0(x, "y) = φ0(x)
N∏

j=1

χ0(yj)



Bringing it back to the wavefunction

• Final wavefunction:

• A “schrodingers cat” wavefunction.

ψ(x, "y, t ≈ ∞)

=
√

λφ̃(x− L)
N∏

j=1

χ∞(yj − L) +
√

1− λφ̃(x + L)
N∏

j=1

χ∞(yj + L)



A model for measurement

• Measurement consists of determining the state of the macroscopic system, in 
this case a vector     (or at least some function            ).

• From     we infer a value for x. But with what statistical significance can we do 
this?

• This framework covers the instrumentalist picture, Bohmian Mechanics, and 
most particle-based ontologies.

!y

!y

F (!y)



Statistical Significance

• Consider measurement process: given knowledge of     , determine value of x. 
With what statistical significance can we answer this question?

• Partition configuration space                                  , and use the rule                
for                 and vice versa.

• Confidence level:                                                       , where 

!y

R3N = Ω1 ∪ Ω2

P1(!y ∈ Ω1) + P2(!y ∈ Ω2)

x ≈ −L
!y ∈ Ω1

dP1 =
N∏

j=1

|χ∞(yj + L)|2d"y

dP2 =
N∏

j=1

|χ∞(yj − L)|2d"y



Statistical Significance

• Choose                 so that                                                                        to get 
an unbiased estimator.

• This gives best possible decision procedure.

• In the event we know only            rather than     , our statistical confidence 
can only go down. 

•             models deterministic experimental errors, e.g. differences in     which 
are experimentally invisible. 

Ω1,Ω2 P1(!y ∈ Ω1) = P2(!y ∈ Ω2) = p/2

F (!y) !y

!yF (!y)



Bounds on the interference:

• Interference term:

• Bounds:

2!
N∏

j=1

χ̄∞(yj + L)d"y
N∏

j=1

χ∞(yj − L)

∫
∣∣∣∣∣∣

N∏

j=1

χ∞(yj + L)
N∏

j=1

χ∞(yj − L)

∣∣∣∣∣∣
d"y

≤ ||
N∏

j=1

χ∞(yj + L)||Ω1 ||
N∏

j=1

χ∞(yj − L)||Ω1

+||
N∏

j=1

χ∞(yj + L)||Ω2 ||
N∏

j=1

χ∞(yj − L)||Ω2

≤
√

p/21 + 1
√

p/2 = O(
√

statistical confidence)



Statistical Significance and Interference

• The p-value of the experiment provides an upper bound on the size of the 
interference term. 

• Good experiments (statistically significant ones) destroy interference. 

• Experimental prediction: “fractional measurements” are possible. A “fractional 
measurement” is an experiment with large p-values which only partially 
destroys interference.



The One-Pixel Camera

• Consider an experimental measurement consisting of counting the number of 
fluid particles in a fixed region (the “pixel”). 

• If splash is contained within pixel, average number of fluid particles observed 
is different than if not. This provides a means of determining whether the 
particle is within the pixel. 

• Statistical significance: p=0.1% requires splash to involve 47 particles for 
repulsive particle previously simulated.

• Thus, 47 fluid particles is sufficient to reduce interference to about 5% of the 
total wavefunction.



The Wave Collapse 
Approximation

• Suppose we make a 
measurement, and the particle 
is observed to be on the right.

• To simplify calculations, set left 
wavepacket equal to zero.

• This is computationally simpler 
than tracking both 
wavepackets, and equally 
accurate.
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Interpreting the results

• Instrumentalist picture: particles exist at the moment of measurement, 
distributed according to the probability distribution. Statistical distribution of 
configurations is consistent with wave collapse, regardless of whether or not 
it occurs.

• Bohmian picture: particles exist for all time; in particular the particle we 
measure follows the trajectory q(x,t). The wave collapse approximation does 
not significantly alter q(x,t). 

• GRW/Objective (Stochastic) Collapse: No comment.



Conclusion

• Derived multiconfiguration mean field model for quantum system consisting 
of a particle interacting with a Bose gas. 

• Reduced model to classical particle coupled to a Bose gas.

• Derived quantum friction, showing that the particle eventually stops.

• Showed that statistical significance of experimental outcomes provides upper 
bound on quantum interference.

• Suggested possibilities for fractional measurements.



Thank you


