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Abstract

A recurring task in image processing, approximation theory, and the
numerical solution of partial differential equations is to reconstruct a
piecewise-smooth real-valued function f(x), where x ∈ R

N , from its trun-
cated Fourier transform (its truncated spectrum). An essential step is
edge detection for which a variety of one-dimensional schemes have been
developed over the last few decades. Most higher-dimensional edge de-
tection algorithms consist of applying one-dimensional detectors in each
component direction in order to recover the locations in R

N where f(x)
is singular (the singular support).

In this paper, we present a multidimensional algorithm which identifies
the wavefront of a function from spectral data. The wavefront of f is the
set of points (x,~k) ∈ R

N × (SN−1/{±1}) which encode both the location
of the singular points of a function and the orientation of the singularities.
(Here SN−1 denotes the unit sphere in N dimensions.) More precisely, ~k is
the direction of the normal line to the curve or surface of discontinuity at x.
Note that the singular support is simply the projection of the wavefront
onto its x-component. In one dimension, the wavefront is a subset of
R

1 × (S0/{±1}) = R, and it coincides with the singular support. In
higher dimensions, geometry comes into play and they are distinct. We
discuss the advantages of wavefront reconstruction and indicate how it
can be used for segmentation in magnetic resonance imaging (MRI).

1 Introduction

Consider an image, i.e. a function ρ : R
2 → R

+. If the image is smooth (e.g.

Cm(R2)), then the Fourier transform of ρ(x), denoted ρ̂(~k), will decay rapidly

(and hence be localized near ~k = 0). Discontinuities in the image cause ρ̂(~k)

to decay more slowly as |~k| → ∞. Thus, information about the discontinuities

can be said to be encoded in the high frequency components of ρ̂(~k). The goal
of spectral edge detection is to recover the location of the discontinuities from
limited (and often noisy) information about ρ̂(~k).

As an example, consider the function ρ(x) = 1B(x) which is equal to 1 inside
B = {x : |x| < 1} and 0 elsewhere. The set of discontinuities of this function (the

1



singular support) is given by {x : |x| = 1}. One natural approach to computing
the curve on which the discontinuities lie is to first find a set of point which
lie in the singular support, followed by an algorithm aimed at connecting these
points sets into a finite number of curves. In our example, the output would be
the unit circle. A relatively recent and important class of methods for locating
the singular support is based on concentration kernels [10, 12, 14, 15, 16], a high
pass filtering approach, which we describe briefly below.

For the function ρ(x) = 1B(x), the normal at each point of discontinuity
x is simply the normal to the unit circle at that point. The wavefront of this
function is, therefore, {(x, k)}, with |x| = 1 and ~k ‖ x. In this paper, we study
the problem of extracting the wavefront from continuous spectral data available
in a finite frequency range |~k| < kmax in two dimensions. This extra information
is useful practically as well as theoretically. First, it is easier to reconstruct
curves of discontinuity from points in the wavefront than points in the singular
support, both in closing “gaps” and in associating points on close-to-touching
curves to the correct one [2, 7, 8, 9, 17]. Second, the directional information is
useful for noise removal. If spurious points are included in the wavefront set, the
normal (or tangent) data allows us to filter it out; it is unlikely that a random
point and a random tangent will be consistent with the points and tangents
that come from the actual curves of discontinuity, as we have shown previously
in [17].

Our approach to edge detection is based on applying concentration kernels
(high pass filters) to angular slices of the Fourier data. Rather than recovering
the points on the edges (as in [10, 15, 16]), we also determine the direction
of the normal. In section 2, we present a precise statement of the problem to
be solved and an overview of the full edge detection procedure (section 2.4).
In section 3, we present a detailed analysis of the asymptotic behavior of the
Fourier transform of the characteristic function of a smooth region. Section 4 is
devoted to a discussion of the directional filters used to extract wavefront data
and Section 6 describes the full algorithm. Many of the proofs are technical and
we have relegated most proofs to the appendices. We discuss the application of
our method to magnetic resonance imaging (MRI), where raw data is acquired
in the Fourier domain, extending the algorithm of [14]). Finally, we note that
our algorithm is closely related to the recent paper [18], which describes a wave-
front extraction procedure based on the shearlet transform, extending the use
of curvelets in [5, 6].

2 Mathematical Formulation

Let ρ(x) be a piecewise smooth function form R
2 → R, and let χ(x) be a C∞

compactly supported radial function. The singular support of ρ(x) consists of
the points x0 ∈ R

2 for which χ(λ(x − x0))f(x) has slowly decaying Fourier
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transform for every λ > 0, i.e.:

∀λ > 0, sup
|~k|≥kr

∣∣∣∣
∫

ei~k·x
ρ(x)χ((x − x0)λ)dx

∣∣∣∣ = O(kr
−3/2) (2.1)

In order to find the singular support, concentration kernel methods [10,

12, 14, 15, 16] multiply the Fourier data ρ̂(~k) by a function which gives heavier
weight to high frequencies than to low frequencies (a high-pass filter). Since high
frequencies encode the location of singularities but are unaffected by smooth
parts of the image, this method isolates discontinuities from the rest of the im-
age. In short, concentration kernel methods find the location of singularities by
flagging local maxima in the inverse Fourier transform of the high-pass filtered
Fourier data.

The wavefront of a function consists of the points (x0, ~k0) ∈ R
2 × S

1 for
which the Fourier transform of χ(λ(x − x0))ρ(x) decays slowly in the direction
~k0 = (kr, kθ):

∀λ > 0, sup
r≥kr

∣∣∣∣
∫

eirk0·xρ(x)χ((x − x0)λ)dx

∣∣∣∣ = O(kr
−3/2) (2.2)

As indicated in the introduction, while the singular support of ρ(x) only contains
the location of singularities, the wavefront also contains the direction of the
singularities.

Remark 2.1 In the language of computational geometry, the singular support
is a set of points, while the wavefront is a set of surfels (pairs of the form (x, k)
with x representing a position and k a direction).

2.1 Definition of the image class

To simplify the theory, we consider a special class of images. In particular, we
consider two-dimensional images supported on [0, 1]2 and vanishing near the
boundaries, which consist of a set of piecewise constant functions on which is
superimposed a globally smooth function:

ρ(x) =




M−1∑

j=0

ρj1γj
(x)


 + ρtex(x) (2.3)

where γj(t) are simple closed curves, and 1γj
(x) = 1 for x in the interior of γj

and 0 elsewhere. The “texture” term ρtex(x) is band limited, i.e. ρ̂tex(~k) = 0

for
∣∣∣~k
∣∣∣ ≥ ktex.

Definition 2.2 Let γj(t) be a simple closed curve. The curvature at each point
is denoted by κj(t), the normal to γj(t) is denoted by Nj(t), and the tangent is
denoted by Tj(t).
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Figure 1: An illustration of Assumption 2. The black arrow illustrates the
condition (2.5a), while the red arrow illustrates the condition (2.5b).

Assumption 1 We assume the curves have bounded curvature, i.e.:

∀i = 0 . . .M − 1, κi(s) =

∣∣γ′
i,x(t)γ′′

i,y(t) − γ′
i,y(t)γ′′

i,x(t)
∣∣

(γ′
i,x(t)2 + γ′

i,y(t)2)3/2
≤ κ̄ (2.4)

Assumption 2 We also assume that the curves are separated from each other
(see Fig. 1):

sup
t,t′

|γi(t) − γj(t
′)| ≥ δ for i 6= j (2.5a)

and that different areas of the same curve are separated from each other, i.e. if
the curves are parameterized to move at unit speed, then:

sup
|t−t′|>κ̄−1π/2

|γi(t) − γi(t
′)| ≥ δ (2.5b)

In order to extract the wavefront, we assume each edge is associated with
a sufficiently large discontinuity. Since our wavefront detector decays some-
what slowly away from the wavefront, we also assume that the discontinuity is
bounded from above, so as not to pollute nearby edges of lower contrast. We
formalize this as:

Assumption 3 We assume the contrast of the discontinuities in the image is
bounded above and below:

0 < ρ ≤ ρj ≤ ρ (2.6)
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The data we are given and wish to segment are noisy samples of ρ̂(~k) ob-

tained on a 2m × 2m grid with spacing 2π in ~k-space centered at the origin:
~k ∈ 2πZ2m with Z2m = {−2m−1, . . . , 2m−1 − 1}2. Our segmentation goal is to
recover the curves γj(t).

With the preceding sampling, we may define the maximum frequency avail-
able in the image as kmax = 2π2m−1. We assume that ktex < kmax. More pre-
cisely, we assume that kmax − ktex ≥ 12 · 2π, providing at least 12 lattice points
in the sampling beyond ktex. In most of our experiments, we take ktex = 2π ·16,
and kmax = 2π · 32.

Finally, we make the technical assumption that the curves have non-vanishing
curvature:

Assumption 4 We assume that the curvature of the curves is bounded below.

∀i = 0 . . .M − 1, κi(s) ≥ κ > 0 (2.7)

Remark 2.3 The assumption (2.7) implies that the region bounded by γi(t) is
convex. This geometric fact is not used by our algorithm in any way.

Remark 2.4 Assumption 4 is introduced only because it is required below
by our proof technique for the correctness of the directional filters. It is not
strictly necessary, and it would be straightforward to extend our analysis to cases
where the curvature vanishes. This, however, would require more complicated
conditions on higher derivatives of γj(t) in places where the curvature vanishes,
and correspondingly more complicated proofs. See Figure 6 which illustrates
that our algorithm works even when Assumption 4 is violated.

2.2 Wavefront Extraction Methodology

The algorithm we present in this work takes an image, given as spectral data
ρ̂(~k), and extracts a set of surfels sampled from the wavefront. We do this in
two steps.

First, we construct a set of directional filters:

[Dθ,αρ̂](x) = F−1[W(kr)V(kθ − θ)ρ̂(~k)] (2.8)

Here, W(kr) is a high pass filter in the radial direction (the radial filter), V is
a smooth function, compactly supported on [−α, α] (the angular filter), and F
is the Fourier transform. Note that, given a direction θ, the angular filter is
supported on the angular window [θ − α, θ + α]. The angular and radial filters
will be related by the parabolic scaling:

width2 = length

(Equivalently, they will be chosen to satisfy width = length2 in the x-domain.)
In particular, this implies that the filter angle α ∼ (pass-band)−1/2, where
pass-band is the center of the pass-band of the radial filter (to be determined
in section 4).
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When applied to the function ρ̂(~k), the directional filters will return a func-
tion which is small except near locations where Nj(t) points in the direction θ.
This allows us to pinpoint the locations of singularities with direction θ. The re-
sult is, in some sense, a directional version of the jump function of [10, 14, 15, 16].
Spikes (local maxima) obtained from these directional filters correspond to sur-
fels in the wavefront of the image.

Remark 2.5 For the algorithm described here to work, it is required that ac-
curate values of the continuous spectral data be available. The discrete Fourier
transform (DFT) of ρ(x) can not be used as a substitute for the continuous
data, since aliasing induced by the DFT will destroy the asymptotic expansion
of ρ̂(~k).

2.3 A note on our phantom

In the medical imaging literature, the Shepp-Logan phantom (which is piecewise
constant) is a traditional choice for analysis and validation purposes. We have
added a smoothly varying component (see (2.3)), with ρtex(x) defined as a sum
of Gaussians whose bandwidth (to six digits of accuracy) is equal to half the
bandwidth of the measurement data.

2.4 Informal Description of the Algorithm

The full algorithm proceeds in three steps.

1. Construct directional filters, based on kmax (the maximum frequency con-
tent of the data) and ktex (the frequency content of the “smooth” part of
the image).

2. Multiply the data ρ̂ by each directional filter indexed by θ = jπ/A, j =
1, . . . , A) and transform back to the image domain.

• Apply a threshold in the image domain.

• Add each point x above the threshold to the surfel set as the pair
(x, kθ).

3. Given the set of all surfels, use the algorithm of [17] to reconstruct the set
of curves γj(t) that define the discontinuities.

The last step is described briefly in section 6, while the bulk of the paper is
devoted to the surfel extraction procedure itself.

3 Large k Asymptotics of 1̂γj
(~k)

In this section we wish to compute the large k asymptotics of 1̂γj
(~k). In partic-

ular, we will show that 1̂γj
(~k) is dominated solely by the parts of γj(t) where

γ′
j(t) · ~k = 0, i.e. where k ⊥ Tj(t).
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Figure 2: A plot of the phantom used in this work. The image in the sec-
ond panel is obtained by applying the DFT to the (exactly known) continuous
Fourier Transform of the phantom on a 64× 64 grid of samples in k-space.
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We can use Green’s theorem to rewrite the Fourier transform of 1γj
(x)

as follows. Let F (~k, x) = (F1(~k, x), F2(~k, x)) = −i
∣∣∣~k
∣∣∣
−2

ei~k·x~k⊥ with ~k⊥ =

[−k2, k1]
T . Then by Green’s theorem:

1̂γj
(~k) =

∫ ∫

Ωj

ei~k·xdx1dx2 =

∫ ∫

Ωj

∂x1
F2(~k, x) − ∂x2

F1(~k, x)dx1dx2

=

∫

S1

F (~k, γj(t)) ·
dγj(t)

dt
dt =

1

i|~k|2

∫

S1

ei~k·γj(t)~k⊥ · γ′
j(t)dt (3.1)

(with Ωj the region bounded by γj). This trick is taken from [22].

We can now use stationary phase to approximate 1̂γj
(~k) for large k. For

this, express k in polar coordinates (kr, kθ), fix a direction kθ, and consider

what happens as kr becomes large. As we remarked earlier, the phase ~k · γj(t)

becomes stationary only when ~k · γ′
j(t) = 0 or ~k · Tj(t) = 0. This is precisely

where k points normal to the curve, and it is these locations that dominate
1̂γj

(~k):

Proposition 3.1 Let tj(~k) correspond to the value of t at which Nj(t) ‖ k and

Nj(t) · ~k > 0 (i.e. the normal to γj(t) points in the direction k). Then:

M−1∑

j=0

ρj 1̂γj
(~k) =

M−1∑

j=0

ρj


ei~k·γ(tj(~k))

∣∣∣~k
∣∣∣
3/2

√
π√

κj(tj(~k))
+

ei~k·γ(tj(−k))

∣∣∣~k
∣∣∣
3/2

√
π√

κj(tj(−~k))




+
E(~k)∣∣∣~k
∣∣∣
2 (3.2)

where E(~k) ≤ Cgeo with

Cgeo = Mρ

(
4 +

8κ̄

πκ
+ 2

√
2κ̄

κ

)
+ 3ρ

supj

∥∥γ′′′
j (t)

∥∥
L∞

κ

∑

j

arclength(γj) . (3.3)

Note that Cgeo incorporates both geometric and contrast information about
the image itself. This result is proved carefully in Appendix A. The basic idea
behind the proof is simple, however. Set k = kr

~kθ, with ~kθ fixed. Then:

∫

S1

ei~k·γj(t)~k⊥ · γ′
j(t)dt =

∫

S1

eikrf(t)~k⊥ · γ′
j(t)dt

with f(t) = ~kθ · γj(t). The phase function f(t) is stationary when ~kθ · γ′
j(t) = 0,

or equivalently the place where ~kθ · Nj(t) = ±1 (i.e. tj(~k) = tj(~kθ)). By
Assumption 4, we find that γ′′

j (t) = κj(t)Nj(t) is nonzero. We restrict the
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consideration to an interval I = [tj(~kθ) − ǫ, [tj(~kθ) + ǫ] and apply stationary
phase:

∫

I

eikrf(t)~k⊥ · γ′
j(t)dt

∼
√

π

krf ′′(tj(~kθ))
eikrf(tj(~kθ))~k⊥ · γ′

j(tj(
~kθ)) + remainder

= kr
1/2

√
π

κj(tj(~kθ))
ei~k·γj(tj(~k)) + remainder (3.4)

Here, the remainder term is o(1). Proving Proposition 3.1 is done by adding
this result up over all the curves, all points of stationary phase, and estimating
the remainder.

Remark 3.2 In fact, the estimate will be considerably better if we assume
greater smoothness on γj(t). The o(1) remainder term in (3.4) (and the o(k−2)

remainder in (3.2)) is obtained by assuming that γ
(3)
j (t) is bounded. If we were

to assume that γ
(5)
j (t) is bounded, we could expand (3.4) to second order and

obtain:

∫

I

eikrf(t)~k⊥ · γ′
j(t)dt = kr

1/2

√
π

κj(tj(~kθ))
ei~k·γj(tj(~k)) + o(kr

−1/2)

We eschew this approach in order to prove the most general result.

3.1 What if κ = 0?

It is important to note that all is not lost when κ = 0. In this case, although
the coefficient on k−3/2 in (3.2) becomes singular, the asymptotics of 1̂γj

(~k) do
not.

In this case, what happens is that the leading order behavior becomes
O(kr

−1−1/n), where n is the order of the first non-vanishing derivative. This can
be seen relatively easily from stationary phase, although rigorous justification
requires a long calculation. However, the limiting case n = ∞ (a straight line)
is easy enough to treat.

Proposition 3.3 Let γ(t) = ~a + (~b − ~a)t for t ∈ [0, 1]. Then:
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1

i
∣∣∣~k
∣∣∣
2

∫ 1

0

ei~k·γ(t)~k⊥ · γ′(t)dt

=





−1

|~k|2
~k⊥·(~b−~a)
~k·(~b−~a)

[
ei~k·~b − ei~k·~a

]
, ~k · (~b − ~a) 6= 0

ei~k·~a

|~k|2
~k⊥ · (~b − ~a), k · (~b − ~a) = 0

=

{
O(kr

−2), k · (~b − ~a) 6= 0

eik·~aO(kr
−1), k · (~b − ~a) = 0

(3.5)

Proof. If ~k · (~b − ~a) 6= 0, then:

∫ 1

0

eik·γ(t)~k⊥ · γ′(t)dt =

∫ 1

0

eik·((~b−~a)t+~a)~k⊥ · (~b − ~a)dt

= ~k⊥ ·(~b−~a)eik·~a

∫ 1

0

eik·((~b−~a)t)dt = ~k⊥ ·(~b−~a)eik·~a

[
eik·(~b−~a)

ik · (~b − ~a)
− 1

ik · (~b − ~a)

]

=
~k⊥ · (~b − ~a)

ik · (~b − ~a)

[
eik·~b − eik·~a

]

Multiplying by (i
∣∣∣~k
∣∣∣
2

)−1 yields the result we seek.

The asymptotics are straightforward to compute (from the second line of
(3.5)), but note that the constant in the O(kr

−2) term in (3.5) is not uniform

in k∠(~b − ~a). �

4 Directional Filters

We are now in a position to build the filter operators Dθ,α of (2.8), which will
allow us to extract edge information from the signal. We demand that the radial
filter takes the form

W(kr) = Wp(kr − (kmax + ktex)/2) + Wp(kr + (kmax + ktex)/2) (4.1a)

where W̌p(r) is a positive, symmetric function. This means that the 1-dimensional
inverse Fourier transform of W(kr) is

W̌(r) = cos

(
kmax + ktex

2
r

)
W̌p(r) (4.1b)

For simplicity, we also assume that the angular filter is normalized:

‖V(kθ)‖L1(kθ,dkθ) = 1. (4.1c)
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The intuition behind this operator is the following. Multiplying by W(kr)V(kθ−
θ) localizes on the region k ≈ (kr cos θ, kr sin θ). Dropping all but one of the
terms in Proposition 3.1, we find that:

W(kr)V(kθ − θ)1̂γk
(~k) ≈ eik·γj(tj(~k))κj(tj(~k))−1/2A(~k) .

The term A(~k) incorporates both the 1/|~k|3/2 decay from the asymptotics of

1̂γk
(~k) and the localization to kθ and large kr from the filters.
Therefore, if we inverse Fourier transform, we will obtain

F−1[eik·γj(tj(~k))κj(tj(~k))−1/2A(~k)] ≈ κj(tj(~k))−1/2Ǎ(x − γj(tj(~k)))

Provided Ǎ(x) is a sharply localized bump function, this will be a bump located

at γj(tj(~k)). Of course, this calculation is not exactly correct, and is presented
merely to obtain intuition. We will go through the details shortly, but require
a few definitions.

Definition 4.1 Given W(kr), define the auxiliary functions:

W̌(r) =

∫
e−irkrW(kr)dkr (4.2a)

W(R) = sup
r>R

∣∣W̌(r)
∣∣ (4.2b)

Definition 4.2 Define the set Aθ,α ⊂ R
2 to be the set of points where some

γj(t) has normal pointing in the direction [θ − α, θ + α], i.e.:

Aθ,α =

M−1⋃

j=0

[
{γj(t)}t∈[tj(θ−α),tj(θ+α)] ∪ {γj(t)}t∈[tj(θ−α+π),tj(θ+α+π)]

]
(4.3a)

We also define Aθ,α
j to be the set of arcs excluding γj(tj(θ)).

Aθ,α
j =

⋃

i6=j

[
{γi(t)}t∈[ti(θ−α),ti(θ+α)] ∪ {γi(t)}t∈[ti(θ−α+π),ti(θ+α+π)]

]
(4.3b)

The goal of our directional filters is to approximate the location of Aθ,α. That
is to say we want Dθ,αρ to be large near Aθ,α and small away from it. The
decay in the tangential direction away from a point in Aθ,α is at least of the
order O(r−1). To ensure that the decay in the normal direction is as fast, we
consider the case when W̌(r) = O(r−1) (see Fig. 3 d).

We then have the following result which proves the directional filters ap-
proximate the location of Aθ,α.

Theorem 4.3 Suppose that α satisfies

α2 (kmax + ktex)

κ
≤ π (4.4a)
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and W(kr) satisfies (4.1a) as well as the following decay condition:

W(r) ≤ CW

r
(4.4b)

Then away from Aθ,α, the directional filter has the following decay:
∣∣∣∣∣∣
Dθ,α




M−1∑

j=0

ρj 1̂γj
(x)



∣∣∣∣∣∣
≤ C(W ,V , α)

d(x, Aθ,α)
+
∥∥∥kr

−1/2W(kr)
∥∥∥

L1(R,dkr)
Cgeo (4.4c)

where

C(W ,V , α) =
2Mρ

√
2π√

κ cos(2α)
max

{
CW ,

(
2 ‖W(kr)/kr‖L1(R,dkr)

[
‖V ′(kθ)‖L1 +

∥∥γ′′′
j (t)

∥∥
L∞

2κ2

]
+
√

κ
∥∥W̌(z)(z + 1)

∥∥
L∞

)}

(4.4d)

At the point x = γj(tj(θ))

[θ · Nj(t)]Dθ,α




M−1∑

j=0

ρj 1̂γj
(x)


 ≥ T(W ,V , α) (4.4e)

with

T(W ,V , α) ≡
√

π

2κ̄
ρ inf

r∈[−α2/2κ,α2/2κ]
W̌p(r)

−
[
C(W ,V , α)(2M − 1)

2M δ
+
∥∥∥kr

−1/2W(kr)
∥∥∥

L1(R,dkr)

]
Cgeo (4.4f)

We postpone the proof of this result to Appendix B, where we compute the
leading order asymptotics of a single segment of the curve and put the various
pieces together.

Remark 4.4 While the expressions above are somewhat involved, for the filters
described in the next section, (4.4c) simplifies to

∣∣∣∣∣∣
Dθ,α




M−1∑

j=0

ρj 1̂γj
(x)



∣∣∣∣∣∣

≤ C(W ,V , α)

d(x, Aθ,α)
+ O

(
1

kmax
1/2 + ktex

1/2

)
. (4.5)

Note that the second term in this estimate becomes negligible as kmax increases.
The term C(W ,V , α) determines the rate of decay of the directional filter away
from a surfel and it should be as small as possible (to minimize noise), for which
the norm of W should be small. At the same time, we want T(W ,V , α) to be
as large as possible (to maximize signal). For this, the norm of W should be
large. We will need to balance this competition.
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Remark 4.5 If the decay of W(r) is faster than (4.4b), we can of course get
sharper results. However, this would require extra geometric conditions and
would require Theorem 4.3 to make distinctions concerning the direction from
x to Aθ,α. To simplify the exposition of this paper, such considerations will be
reported at a later date.

4.1 The estimate is suboptimal

Let us consider the application of our directional filters on a simple numerical
example. We consider a 64 × 64 pixel image on [0, 1]2. The image is taken
to be the phantom described in Section 2.3, and the parameters are kmax =
64π ≈ 201.1, ktex = 32π ≈ 100.5, α = π/16, κ = 0.1 and

∥∥γ′′′
j (t)

∥∥
L∞

≤ 5.
With this set of parameters, C(W ,V , α) = 0.3 if we use the windows V(kθ) =
(2α)−11[θ−α,θ+α](kθ) and W(kr) = (kmax−ktex)

−11[ktex,kmax](kr). The first term
on the right-hand side in (4.4c) is, therefore, approximately 0.3/(1/64) ≈ 25 if we
move one pixel away from a surfel. The second term, however, is approximately
85 so that we have no reason to expect that the directional filters will yield any
useful information. However, numerical experiments show that they do in fact
work even in this case. Figure 3 shows that the directional filters do yield the
location of the edges. Figure 4 shows that even in the presence of noise (up to
7.5% of the total image energy), the directional filters still yield correct results.

It is also useful to compare the directional filters to a naive algorithm, namely
computing the directional derivative. As is apparent from Figure 5, this naive
method does not perform as well as our algorithm.

4.2 Parabolic Scaling

The choice of α is an important one. We want α to be as small as possible,
since this will give us better angular resolution.

On the other hand, the constant bounding the size of the filtered image away
from the edges is directly proportional to α−1, as we will show shortly.

For simplicity, let us take V(kθ) to be a fixed filter scaled with α, i.e. V(kθ) =
α−1V (kθ/α), where V (kθ) is supported in [−1, 1] and ‖V (kθ)‖L1(dkθ) = 1. With

this choice of V(kθ), we find that:

‖V ′(kθ)‖L1(S1,dkθ) =
∥∥α−1V ′(kθ/α)

∥∥
L1(S1,dkθ)

= α−1 ‖V ′(kθ/α)‖L1(S1,dkθ)

(4.6)
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Figure 3: An illustration of the sharp directional filter. The first panel shows
the image. The second panel shows the directional filter in k-space. The third
panel shows the edge map [Dθ,αρ̂](x) with θ = π/4 and α = π/16. The red
lines are the |[Dθ,αρ̂](x)| = 2.4 contour lines, while the green lines are the actual
(analytically known) edges of the image. The fourth panel shows the directional
filter in the x-domain.
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Figure 4: An illustration of the directional filters in the presence of noise. The
image and parameters are the same as in Figure 3. The figures in the left column
are plots of [Dθ,αρ̂](x). The gray dotted lines in the right column illustrate the
discontinuities of the image (which we know exactly, c.f. Section 2.3), while
the red regions are the places where |[Dθ,αρ̂](x)| = 2.4. Noise amplitude is
described as a percentage of the total image strength. Noise begins to corrupt
the data when it reaches 7.5%, and becomes a serious problem at 10%.
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Figure 5: Result of edge detection based on measuring the directional derivative,
i.e. ∂π/4ρ(x). The green lines represent the analytically known edges of the

image, while the red regions are the regions where
∣∣∂π/4ρ(x)

∣∣ ≥ 150.
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Figure 6: Result of edge detection applied to an image where Assumption 4 is
violated. The green lines in the second panel indicate the actual discontinuities,
while the red arrows indicate extracted surfels (at angles θ = 0 and θ = π/4.
The vertical and horizontal Gray bars are artifacts from using the DFT to
reconstruct a discontinuous image.
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Substituting this into (4.4d) and assuming α to be very small yields:

C(W ,V , α) =

√
2π√

κ cos(2α)

(
2 ‖W(kr)/kr‖L1(R,dkr)

×
[
α−1 ‖V ′(kθ/α)‖L1(S1,dkθ) +

∥∥γ′′′
j (t)

∥∥
L∞

2κ2

]

+
√

κ
∥∥W̌(z)(z + 1)

∥∥
L∞

)
= O

(
κ−1/2α−1 ‖W(kr)/kr‖L1(R,dkr)

)
(4.7)

To prevent C(W ,V , α) from being too large, we want to ensure that α is as large
as possible.

However, to ensure that the filter is sufficiently large on the edges, we need
to prevent α from being too large (Theorem 4.3). In particular, we require (c.f.
(4.4a))

α ≤
√

πκ

kmax + ktex
(4.8)

To satisfy both these constraints, we simply replace the “≤” in (4.8) by “=”.
This yields the standard parabolic scaling used elsewhere [5, 6, 11, 21, 23].

Remark 4.6 The requirement (4.4a) yields the standard parabolic scaling used
to analyze line discontinuities in harmonic analysis [5, 6, 11, 21, 23]. In the x-
domain, the standard parabolic scaling uses elements with width ∼ length2. In
the k-domain, this translates to width ∼ √

length.

This also implies that for the filter to approach zero as ktex, kmax → ∞, we
require that ‖W(kr)/kr‖L1(R,dkr) = o(ktex

−1/2).

4.3 Choosing the Filters

We now consider the simplest choices of window possible which satisfy our
assumptions. We take W(kr) to be a a step function, i.e.:

W(kr) =
1

2(kmax − ktex)

(
1[ktex,kmax](kr) + 1[−kmax,−ktex](kr)

)

and we take V(kθ) to be a triangle function:

V(kθ) =
1

α2
max{α − |kθ| , 0}
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In this case, it is straightforward to show:

∥∥∥kr
−1/2W(kr)

∥∥∥
L1(R,dkr)

=
1

kmax
1/2 + ktex

1/2

∥∥kr
−1W(kr)

∥∥
L1(R,dkr)

=
ln(kmax/ktex)

kmax − ktex

∥∥W̌(r)(r + 1)
∥∥

L∞(R,dr)
≤ 1

kmax − ktex

CW =
1

kmax − ktex

‖V(kθ)‖L1(S1,dkθ) = 1

‖V ′(kθ)‖L1(S1,dkθ) = 2α−1 = 2

√
kmax + ktex

π

Then we have:

C(W ,V , α) =

√
2π√

κ cos(2α)(kmax − ktex)
max

{
1,

2 ln(kmax/ktex)

(
2

√
kmax + ktex

πκ
+

∥∥γ′′′
j (t)

∥∥
L∞

2κ2
+
√

κ

)}
(4.9)

Similarly, the remainder term has the bound:

∣∣∣∣∣Dθ,α
E(~k)

|k|2

∣∣∣∣∣ ≤
1

kmax
1/2 + ktex

1/2
‖V(kθ)‖L1(S1,dkθ)

× Cgeo ,

where Cgeo is defined in (3.3).
Therefore, we find that:

∣∣∣∣∣∣
Dθ,α




M−1∑

j=0

1̂γj
(x)



∣∣∣∣∣∣

= O

(
1

d(x, Aθ,α)

[
ln(kmax/ktex)

√
kmax + ktex

kmax − ktex

]
+

1

kmax
1/2 + ktex

1/2

)
(4.10)

Thus, away from Aθ,α, the directional filter approaches zero. The O(ln(kmax/ktex)/(kmax−
ktex)) factor is present because we are attempting to extract spatial information

from a frequency band of width kmax − ktex. The 1/(kmax
1/2 + ktex

1/2) term
is present because the asymptotic expansion we used to derive the directional
filters decays only kr

−1/2 faster than the leading order terms.
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5 Surfel Extraction

Theorem 4.3 proves that, provided we choose the parameters correctly, direc-
tional filters will decay away from Aθ,α. Extracting surfels from the filters is
therefore simply a matter of choosing the parameters correctly and seeking local
maxima.

We know that at the point γj(tj(θ)), (4.4e) provides a lower bound on the
size of the directionally filtered image. We also know that away from Aθ,α,
(4.4c) provides an upper bound on the size of the filtered image.

We wish to say that if the filtered image is “large”, then we are near Aθ,α,
otherwise we are not. Therefore, we will need the lower bound at γj(tj(θ)) to
be greater than the upper bound away from Aθ,α:

√
π

2κ̄
ρ ‖V(kθ)‖L1(dkθ) inf

r∈[−α2/2κ,α2/2κ]
Wp(r)

−
[

C(W ,V , α)(2M − 1)

2M d(x, Aθ,α
j)

+
∥∥∥kr

−1/2W(kr)
∥∥∥

L1(R,dkr)

]
Cgeo

≥ C(W ,V , α)

d(x, Aθ,α)
+ Cgeo

∥∥∥kr
−1/2W(kr)

∥∥∥
L1(R,dkr)

(5.1)

Using the fact that d(x, Aθ,α
j) ≥ d(x, Aθ,α), we find that (5.1) implies:

ρ

√
π

2κ̄
inf

r∈[−α2/2κ,α2/2κ]
Wp(r)/Cgeo

≥ (4M − 1)C(W ,V , α)

2Md(x, Aθ,α)
+ 2

∥∥∥kr
−1/2W(kr)

∥∥∥
L1(R,dkr)

(5.2)

Thus, if
∥∥∥kr

−1/2W(kr)
∥∥∥

L1(R,dkr)
is sufficiently small, then (5.1) will be true

whenever d(x, Aθ,α) is sufficiently large. In particular, if we make each term
on the right side of (5.2) smaller than half the left side, this equation will be
satisfied.

We summarize this result in the following corollary to Theorem 4.3, which
shows that the directional filter is large only when d(x, Aθ,α) is sufficiently small.

Corollary 5.1 Suppose that:

∥∥∥kr
−1/2W(kr)

∥∥∥
L1(R,dkr)

≤ 1

4
ρ

√
π

2κ̄
inf

r∈[−α2/2κ,α2/2κ]
Wp(r)/Cgeo . (5.3)

Define the surfel location error to be:

D(W ,V , α)

≡ 2

ρ

√
2κ̄

π

[
inf

r∈[−α2/2κ,α2/2κ]
Wp(r)

]−1
(4M − 1)C(W ,V , α)

2M
Cgeo . (5.4a)
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Then whenever
d(x, Aθ,α) ≥ D(W ,V , α), (5.5)

we have that ∣∣∣∣∣∣
Dθ,α




M−1∑

j=0

ρj 1̂γj
(x)


 (x)

∣∣∣∣∣∣
≤ T(W ,V , α). (5.6)

Thus, when x is located a distance at least D(W ,V , α) from Aθ,α, the filtered
image is smaller than T(W ,V , α). On the other hand, at the point γj(tj(α)),
we know that the filtered image is larger than T(W ,V , α). Thus, we obtain the
following thresholding algorithm for locating surfels in the wavefront:

Algorithm 1: Surfel Extraction

Input: The image in the Fourier domain, i.e. ρ̂(~k) and a desired minimal
sampling rate ǫ.

Output: Surfels which approximate the wavefront of ρ(x) in the
direction θ.

let f1(x) := [Dθ,αρ̂](x).1

let Z :=
{
x ∈ [−1, 1]2 : |f(x)| ≥ T(W ,V , α)

}
.2

Cluster the set Z. Any two points are part of the same cluster if they are3

located a distance D(W ,V , α) apart. Let S denote the set of clusters.
let RESULT := [] (the empty set)4

foreach s ∈ S do5

Let the midline of s be the set {midpoint((x + θR) ∩ s) : x ∈ s}.6

Sample the midline of s with spacing at least ǫ, calling the result Q.7

foreach q ∈ Q do8

Add the surfel (q, θ) to RESULT.9

end10

end11

return RESULT12

An example of Algorithm 1 applied to the same image as in Section 4.1 is
shown in Figure 7. The algorithm generates no surfel a distance more than
1.0/64 (i.e., one pixel) away from the actual edge.

We have the following result concerning correctness of Algorithm 1.

Theorem 5.2 Suppose that in addition to (4.1a), (4.4a), (4.4b), (??), (5.3),
the following constraint is satisfied:

D(W ,V , α) ≤ δ

3
(5.7)

Then for every (x, θ) in the result of Algorithm 1, there is a corresponding surfel
(x′, θ′) in the wavefront of ρ(x) with the property that:

|x − x′| ≤ D(W ,V , α) (5.8a)

|θ − θ′| ≤ α (5.8b)
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Figure 7: An illustration of the result of Algorithm 1. The red arrows indicate
the location and direction of extracted surfels in the direction π/4 (with α =
π/16). The surfels are overlayed on the image (reconstructed by DFT).
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Additionally, for each j, at least one surfel output by Algorithm 1 will ap-
proximate some surfel (γj(tj(λ)), Nj(tj(λ))) in the arc segment arc segment
{γj(tj(λ)) : λ ∈ [θ − α, θ + α]}.

Proof. Define the arc segment:

Aj = {γj(tj(λ)) : λ ∈ [θ − α, θ + α]}

By Corollary 5.1, any point x ∈ Z is located a distance at most D(W ,V , α)
away from Aθ,α.

Now, consider any segment s of Z. For any x ∈ s, there is some point x′ in
some arc segment Aj for which d(x, x′) ≤ D(W ,V , α). We need to show that
all points y ∈ s are located at most a distance D(W ,V , α) from the same arc
Aj . Consider a point y with d(y, Ak) ≤ D(W ,V , α). Suppose also that y′ ∈ Ak

is a point for which d(y, y′) ≤ D(W ,V , α). Then:

δ ≤ d(x′, y′) ≤ d(x′, x)+d(x, y)+d(y, y′) ≤ D(W ,V , α)+d(x, y)+D(W ,V , α)

Subtracting 2D(W ,V , α) from both sides and applying (5.7) implies that d(x, y) ≥
δ/3 ≥ D(W ,V , α) and therefore x and y are not in the same segment. Thus, s
consists only of points a distance D(W ,V , α) from Aj .

Therefore, any point on the midline of S is located a distance at most
D(W ,V , α) from Aθ,α. By definition, any point on Aθ,α has a normal pointing
in some direction in [θ−α, θ+α]. This proves the Surfels returned by Algorithm
1 accurately approximate surfels in the wavefront of ρ(x).

To prove that each arc segment has at least one surfel in it, note that by
Theorem 4.3, the point γj(tj(θ)) is contained in Z (c.f. (4.4e)). This implies
that each arc segment {γj(tj(λ)) : λ ∈ [θ − α, θ + α]} generates at least one
segment s of Z. There will be at least one sample taken from this segment,
which will generate a surfel in the output of Algorithm 1. Thus, Theorem 5.2
is proved. �

6 Segmentation: connecting the surfels is better

than connecting the dots

As we have indicated earlier, one of the reasons for developing a surfel/wavefront
extraction procedure is segmentation - by which we mean the reconstruction of
the curves of discontinuity γj which divide the image into well-defined geometric
sub-regions.

The first step in reconstructing the curves is to reconstruct their topology.

Definition 6.1 A polygonalization of a figure {γj(t), j = 0, . . . , M − 1} is a
planar graph Γ = (V, E) with the property that each vertex p ∈ V is a point on
some γj(t), and each edge connects points which are adjacent samples of some
curve γj(t) (see Fig. 8).
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polygonalization

Figure 8: A curve and it’s polygonalization.

There is a substantial literature in computational geometry discussing the
task of taking as input a set of unordered points that lie on a set of curves and
returning a polygonalization [2, 7, 8, 9]. In [17], we described an algorithm for
polygonalization that uses both point and tangent data (i.e. surfels) and showed
that the method is significantly more robust. It is easier to remove spurious data
from the set of surfels and the sampling requirements are much weaker (see Fig.
9) .

In particular, Theorem 2.8 of [17] shows that, given a set of points and tan-
gents (a discrete sampling of the wavefront of ρ(x)), then there is an algorithm
that returns the correct polygonalization provided δ > 2κ̄ǫ2 and ǫ < (

√
2κ̄)−1,

where ǫ is the maximal distance between samples on the curve.
If the point and tangent data are corrupted by noise (as they are in practice),

then we need to assume a maximal sampling rate as well. Otherwise noise could
change the order of samples on the curve. The following theorem provides
technical conditions under which one can prove that the algorithm is correct
when applied to noisy data.

Theorem 6.2 [17, Theorem 3.2] Suppose that Assumptions 1 and 2 hold, that
noise in the point data is bounded by ζ, and that noise in the tangent data is
bounded by ξ. Suppose further that:

δ > 4ζ + 4ǫξ + 2.1κ̄ǫ2 , (6.1a)

ǫ <
1

κ̄
√

2
, (6.1b)
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ε

Figure 9: The advantages of connecting surfels over connecting points are il-
lustrated in this figure. First, the separation between points (ǫ) can be much
greater than the separation between curves (δ). Without information about the
tangent, ǫ and δ must be of the same order. Using the algorithm of [17], it is
easy to automatically assign points to the correct curve. Note also that points
such as C are easy to filter away when tangent information is available, even in
the presence of modest amounts of noise.

and that adjacent points on a curve are separated by a distance greater than
[(1 + 23/2)(2ξǫ + ζ)]. Then there is an algorithm that correctly reconstructs the
figure.

Once the polygonalization of the curve set has been obtained, one can ap-
proximate the geometry with higher order accuracy. This is particularly easy
in the case of surfel data; between each pair of points, cubic Hermite interpola-
tion constructs a fourth order polynomial in arclength that interpolates the two
points and matches the derivative (tangent) data as well. This achieves fourth
order accuracy.

The full segmentation algorithm follows.

Algorithm 2: Segmentation

Input: The Fourier transform of the image, ρ̂(k).
Output: A set of curves approximating the discontinuities of ρ(x).
let S = []1

for j = 1 . . . A do2

let θ = jπ/A3

let s = result of applying Algorithm 1 (the Surfel Extraction4

algorithm, see p. 21) to ρ̂(k) in the direction θ.
Append s to S.5

end6

/* Now S contains surfels pointing in the direction θ for many values of
θ. */

Call the algorithm of [17] to polygonalize S.7

return C, where C is the Hermite interpolant of the polygonalization of8

S.

This algorithm can be proven “correct” in the sense that, for sufficiently
large kmax, the algorithm will return a set of curves which are topologically
correct. To do this, we need need to prove that the output of Algorithm 1
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meets the requirements of Theorem 6.2. This requires verifying that (6.1) are
satisfied. Note that we take Assumptions 1, 2, 3 and 4 as given.

After extracting surfels from the image (as per the loop in lines 2-6 of Algo-
rithm 2), we find that the error in each surfel’s position is bounded by Theorem
5.2:

ζ ≤ D(W ,V , α) = O

(√
kmax

2 − ktex
2

(kmax − ktex)3/2

)
(6.2)

ξ ≤ α = O

(
1√

kmax + ktex

)
(6.3)

Both these quantities are O(kmax
−1/2), holding all other factors fixed, and can

therefore be made as small as desired.
Note that the angle between adjacent surfels returned by separate appli-

cations of Algorithm 1 is at most 2α + π/A. By Lemma A.2, the separation
between two such surfels in arc length is at most (2α + π/A)/κ. By taking

A = O(
√

kmax) (e.g. A = π/α), we find that ǫ = O(kmax
−1/2) and thus (6.1b)

is satisfied for sufficiently large kmax. To satisfy (6.1a), observe that:

4ζ + 4ǫξ + 2.1κ̄ǫ2 ≤ O(kmax
−1/2 + kmax

−1 + kmax
−1) = O(kmax

−1/2) ≤ δ (6.4)

For sufficiently large kmax, this implies (6.1a) is satisfied. Thus, we have shown
that (6.1b) is satisfied. This implies that for sufficiently large kmax (holding
all other parameters fixed), if Assumptions 1 and 2, 3 and 4 are satisfied, then
Algorithm 2 will successfully segment the image.

We summarize this in a Theorem.
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Figure 10: The result of applying the segmentation algorithm to a 64× 64 grid
of spectral data. Note that the separation of two curves near the center is
smaller than a pixel, but that wavefront/surfel reconstruction has no difficulty
in resolving the them.

Theorem 6.3 Suppose that Assumption 1, 2, 3 and 4 hold. Then for suffi-
ciently large ktex, kmax, Algorithm 2 will successfully approximate the singular
support of ρ(x).

The result of applying Algorithm 2 to spectral data for our phantom on
a 64 × 64 grid is shown in Fig. 10. The deviation from the exact result is
noticeable, but is on the order of a pixel since we are using low resolution data
to make the nature of the error clear.
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7 Conclusions

In this paper, we have described a new method for edge detection that can be
viewed as an extension of the method of concentration kernels [10, 12, 14, 15, 16].
We use more complex filters in order to recover information about the wavefront
of a two-dimensional image rather than just its singular set. That is, instead of
trying to locate a set of points that lie on curves of discontinuity, we look for
both those point locations and the normal (or tangent) directions there. This
allows us to reconstruct edges more faithfully and robustly, using the algorithm
developed previously in [17]. We have focused here on a rigorous mathematical
foundation for the method, based on detailed asymptotics and Fourier analy-
sis. Although in this work we require that the curvature of the discontinuities
not vanish, this assumption is merely technical. The algorithm works properly
even when that assumption is violated, and even for singularities which are not
differentiable (see Figure 6 for an example). A major advantage of extracting
surfel information is that one can more easily “denoise” the data, as discussed
in detail in [17] and illustrated in Fig. 9. A number of improvements can still
be made, including the incorporation of nonlinear “limiters” to reduce the os-
cillations produced in the physical domain from our linear filtering procedure
(see, for example, [16]).

Recovering local information about a function from partial Fourier data is a
rather subtle issue, as demonstrated by Pinsky [20] who showed that spherical
partial Fourier integrals do not converge pointwise to the characteristic func-
tion of the unit ball in R

3. His analysis suggests that radial variations of the
concentration method may not converge either (though of course appropriately
filtered versions will).

A limitation of the method described here is that we have assumed the
image consists of a globally smooth function superimposed on a set of piecewise
constant functions. Extensions of our method to more general piecewise smooth
functions will be reported at a later date, as will its application to magnetic
resonance imaging.

A Proof of Proposition 3.1

To prove Proposition 3.1, we will require some results concerning the asymp-
totics of integrals of the form (3.1) near a point of stationary phase.

Lemma A.1 Consider a curve γ(t), proceeding at unit speed, for t ∈ [0, L].
Suppose k · γ′(0) = 0, k · γ′(t) 6= 0 for t ∈ (0, L], and k · γ′′(t) does not vanish.

Let ~kθ = ~k/
∣∣∣~k
∣∣∣.
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Then

1

i |k|2
∫ L

0

eik·γ(t)~k⊥ · γ′(t)dt

=
1

|k|3/2
eik·γ(0) i−1/2

2(~kθ · γ′′(0)/2)1/2
γ(1/2,−i |k|β) +

R(~k)

|k|2

=
1

|k|3/2
eik·γ(0) i−1/2

2(~kθ · γ′′(0)/2)1/2
Γ(1/2)

+
R(~k)

|k|2
− |k|−3/2 eik·γ(0) i

−1/2Γ(1/2,−i |k|β)

2(~kθ · γ′′(0)/2)1/2
(A.1a)

The remainder R(~k) is bounded by:

∣∣∣R(~k)
∣∣∣ ≤ 1 +

3

4

∥∥∥~kθ · γ′′′(t)
∥∥∥

L∞∣∣∣~kθ · γ′′(0)
∣∣∣

L

~kθ · γ′(L)
+

∣∣∣∣∣
~k⊥

θ · γ′(L)

~kθ · γ′(L)
− 1

~kθ · γ′′(0)L

∣∣∣∣∣ (A.1b)

Here, γ(a, z) and Γ(a, z) are the incomplete Gamma functions [1, Chapt. 6.5,
p.p.269] and β = d · γ(L) − d · γ(0).

Proof. This is a standard application of stationary phase [19, Section 3.13].

Recalling that , ~kθ = ~k/ |k|, the unit direction of k, let us define the variable

v = ~kθ ·γ(t)−~kθ ·γ(0) and β = ~kθ ·γ(L)−~kθ ·γ(0), so that dv = ~kθ ·γ′(t)dt. Since

v = ~kθ · γ(t) − ~kθ · γ(0) = ~kθ · γ′′(0)t2/2 + O(t3), a straightforward calculation
shows that

~k⊥
θ · γ′(t(v))

~kθ · γ′(t(v))
∼ v1/2−1

2(~kθ · γ′′(0)/2)1/2
as v → 0.

Thus,

e−ik·γ(0)

∫ L

0

eik·γ(t)~k⊥ · γ′(t)dt = |k|
∫ β

0

ei|k|v
~k⊥

θ · γ′(t(v))

~kθ · γ′(t(v))
dv

= |k|
∫ β

0

ei|k|v v−1/2

2(~kθ · γ′′(0)/2)1/2
dv

+ |k|
∫ β

0

ei|k|v

(
~k⊥

θ · γ′(t(v))

~kθ · γ′(t(v))
− v−1/2

2(~kθ · γ′′(0)/2!)1/2

)
dv

= |k|1/2 i1/2

2(~kθ · γ′′(0)/2)1/2
γ(1/2,−i |k|β)

+ |k|
∫ β

0

ei|k|v

(
~k⊥

θ · γ′(t(v))

~kθ · γ′(t(v))
− v−1/2

2(~kθ · γ′′(0)/2!)1/2

)
dv (A.2)
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We must now bound the remainder, the last line of (A.2). This can be done via
Theorem 12.3 of [19, p.p. 99], which states that the integral is bounded by the
total variation norm of the integrand plus the value at the endpoints, i.e.:

|k|
∫ β

0

ei|k|v

(
~k⊥

θ · γ′(t)

~kθ · γ′(t)
− 1

~kθ · γ′′(0)t

)
dv

= −ieik·γ(L)

(
~k⊥

θ · γ′(L)

~kθ · γ′(L)
− 1

~kθ · γ′′(0)L

)
+ iei~k·γ(0)

(
~k⊥

θ · γ′′(0)

~kθ · γ′′(0)

)
+ E (A.3)

with

|E| ≤
∥∥∥∥∥

(
~k⊥

θ · γ′(t)

~kθ · γ′(t)
− 1

~kθ · γ′′(0)t

)∥∥∥∥∥
TV

To compute the total variation norm, first use the expansion:

(
~k⊥

θ · γ′(t)

d · γ′(t)
− 1

~kθ · γ′′(0)t

)
=

√
1 − (~kθ · γ′(t))2

~kθ · γ′(t)
− 1

~kθ · γ′′(0)t

=
1 + (

√
1 − (~kθ · γ′(t))2 − 1)

~kθ · γ′(t)
− 1

~kθ · γ′′(0)t

=
~kθ · γ′′(0)t − ~kθ · γ′(t)

~kθ · γ′(t)~kθ · γ′′(0)t
+

√
1 − (~kθ · γ′(t))2 − 1

~kθ · γ′(t)
(A.4)

on [0, β].
It is an exercise in elementary calculus to show that ‖f(z)‖TV ([0,1]) = 1 where

f(z) = (
√

1 − z2 − 1)/z; this, combined with the fact that ~kθ · γ′(t) ∈ [0, 1] and
~kθ ·γ′(t) is monotonically increasing, shows that the last term of (A.4) has total
variation less than 1.

To bound the first term, we begin by using Taylor’s theorem:

~kθ · γ′(t) − ~kθ · γ′′(0)t ≡ R2(t) =

∫ t

0

(1/2)~kθ · γ′′′(z)(z − t)dz

Define R(t) = t−1R2(t). Then we can write:

∥∥∥∥∥
~kθ · γ′′(0)t − ~kθ · γ′(t)

~kθ · γ′(t)~kθ · γ′′(0)t

∥∥∥∥∥
TV

≤
∥∥∥∥∥

d

dt

~kθ · γ′′(0)t − ~kθ · γ′(t)

~kθ · γ′(t)~kθ · γ′′(0)t

∥∥∥∥∥
L1

=
1∣∣∣~kθ · γ′′(0)

∣∣∣

∫ L

0

d

dt

R(t)

~kθ · γ′(t)
dt =

1∣∣∣~kθ · γ′′(0)
∣∣∣

∫ L

0

~kθ · γ′(t)R′(t) − R(t)~kθ · γ′′(t)

(~kθ · γ′(t))2
dt

(A.5)
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Note that:

R′(t) = −
∫ t

0

(1/2)~kθ · γ′′′(z)z/t2dz (A.6)

Substituting (A.6) into (A.5) yields:

(A.5) =
1

2
∣∣∣~kθ · γ′′(0)

∣∣∣

∫ L

0

∣∣∣∣∣

∫ t

0

~kθ · γ′′′(z)
−~kθ · γ′(t)z/t2 − (z/t − 1)~kθ · γ′′(t)

(~kθ · γ′(t))2

∣∣∣∣∣ dzdt

=
1

2
∣∣∣~kθ · γ′′(0)

∣∣∣

∫ L

0

∫ t

0

∣∣∣∣∣
~kθ · γ′′′(z)

−~kθ · γ′(t)z − (zt − t2)~kθ · γ′′(t)

(~kθ · γ′(t))2t2

∣∣∣∣∣ dzdt

=
1

2
∣∣∣~kθ · γ′′(0)

∣∣∣

∫ L

0

∫ L

z

∣∣∣∣∣
~kθ · γ′′′(z)

−~kθ · γ′(t)z − (zt − t2)~kθ · γ′′(t)

(~kθ · γ′(t))2t2

∣∣∣∣∣ dtdz

≤

∥∥∥~kθ · γ′′′(t)
∥∥∥

L∞

2
∣∣∣~kθ · γ′′(0)

∣∣∣

∫ L

0

∫ L

z

∣∣∣∣∣
−z

~kθ · γ′(t)t2
− z~kθ · γ′′(t)

(~kθ · γ′(t))2t
+

~kθ · γ′′(t)

(~kθ · γ′(t))2

∣∣∣∣∣ dtdz

≤

∥∥∥~kθ · γ′′′(t)
∥∥∥

L∞

2
∣∣∣~kθ · γ′′(0)

∣∣∣

∫ L

0

∫ L

z

∣∣∣∣∣
d

dt

(
z

~kθ · γ′(t)t

)
+

~kθ · γ′′(t)

(~kθ · γ′(t))2

∣∣∣∣∣ dtdz

≤

∥∥∥~kθ · γ′′′(t)
∥∥∥

L∞

2
∣∣∣~kθ · γ′′(0)

∣∣∣

∫ L

0

∣∣∣∣∣
−z

~kθ · γ′(L)L
+

z

~kθ · γ′(z)z
+

1

~kθ · γ′(L)
− 1

~kθ · γ′(z)

∣∣∣∣∣ dz

=

∥∥∥~kθ · γ′′′(t)
∥∥∥

L∞

2
∣∣∣~kθ · γ′′(0)

∣∣∣

∫ L

0

z

~kθ · γ′(L)L
+

1

~kθ · γ′(L)
dz

≤

∥∥∥~kθ · γ′′′(t)
∥∥∥

L∞

2
∣∣∣~kθ · γ′′(0)

∣∣∣

(
L

2~kθ · γ′(L)
+

L

~kθ · γ′(L)

)

≤ 3

4

∥∥∥~kθ · γ′′′(t)
∥∥∥

L∞∣∣∣~kθ · γ′′(0)
∣∣∣

L

~kθ · γ′(L)
(A.7)

Thus, we have the bound that:

∥∥∥∥∥

(
~k⊥

θ · γ′(t)

~kθ · γ′(t)
− 1

~kθ · γ′′(0)t

)∥∥∥∥∥
TV

≤ 1 +
3

4

∥∥∥~kθ · γ′′′(t)
∥∥∥

L∞∣∣∣~kθ · γ′′(0)
∣∣∣

L

~kθ · γ′(L)
(A.8)

This implies that:

(A.3) = −ieik·γ(L)

(
~k⊥

θ · γ′(L)

~kθ · γ′(L)
− 1

~kθ · γ′′(0)L

)
+ ieik·γ(0)

(
~k⊥

θ · γ′′(0)

~kθ · γ′′(0)

)
+ E

(A.9)
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with

|E| ≤ 1 +
3

4

∥∥∥~kθ · γ′′′(t)
∥∥∥

L∞∣∣∣~kθ · γ′′(0)
∣∣∣

L

~kθ · γ′(L)

Since d is the normal vector to γ(t) at t = 0, and ~k⊥
θ is tangent to it, we find

that ~k⊥
θ · γ′′(0) = 0 (using the fact that γ′′(0) = κ(0)N(0)). Thus, we find that:

∫ L

0

eik·γ(t)~k⊥ · γ′(t)dt = |k|1/2 i1/2

2(~kθ · γ′′(0)/2)1/2
γ(1/2,−i |k|β)

+ ieik·γ(0)

(
~k⊥

θ · γ′′(0)

~kθ · γ′′(0)

)
+ E′ = |k|1/2 i1/2

2(~kθ · γ′′(0)/2)1/2
γ(1/2,−i |k|β) + E′

(A.10)

with

|E′| ≤ 1 +
3

4

∥∥∥~kθ · γ′′′(t)
∥∥∥

L∞∣∣∣~kθ · γ′′(0)
∣∣∣

L

~kθ · γ′(L)
+

∣∣∣∣∣
~k⊥

θ · γ′(L)

~kθ · γ′(L)
− 1

~kθ · γ′′(0)L

∣∣∣∣∣ (A.11)

Multiplying (A.10) by 1/(i |k|2) yields the result we seek. �

We also need the following geometric result:

Lemma A.2 Consider two normal vectors k1 and k2 on a curve γj(t) with an
angle θ between them. Then:

θ/κ ≥ |tj(k1) − tj(k2)| ≥ |θ| /κ̄ (A.12)

Proof. The angle changes most quickly if γj(t) is a circle with minimal radius
of curvature. The arc length along such a curve is |θ|R ≥ |θ| /κ̄. The arc
length changes most quickly (w.r.t angle) along a circle with maximal radius of
curvature, i.e. a circle of radius 1/κ. �

The proof of Proposition 3.1 basically requires us to applying Lemma A.1
to (3.1).

Proof of Proposition 3.1. Note that k · γ′
j(tj(

~k)) = 0. Thus, we may

apply Lemma A.1 to the curve γ(t) = γj(tj(~k) + t) along the segment t ∈
[0, tk(k⊥) − tj(~k)] and similarly to γ(t) = γj(tj(~k) − t). This will give us an
expansion over the sections of the curve where k · Nj(t) ≥ 0. Repeating the
analysis centered at tj(−k) yields an expansion over sections of the curve where
k · Nj(t) ≤ 0.
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Applying Lemma A.1 directly yields the following:

1

i |k|2
∫

k·Nj(t)>0

eik·γ(t)~k⊥ ·γ′(t)dt =
1

|k|3/2
eik·γ(0) i−1/2

2(~kθ · γ′′(tj(~k))/2)1/2
Γ(1/2)

+
R1(~k)

|k|2
− |k|−3/2

eik·γ(0) i−1/2Γ(1/2,−i |k|β1)

2(~kθ · γ′′(tj(~k))/2)1/2

+
1

|k|3/2
eik·γ(0) i−1/2

2(~kθ · −γ′′(tj(~k))/2)1/2
Γ(1/2)

+
R2(~k)

|k|2
− |k|−3/2

eik·γ(0) i−1/2Γ(1/2,−i |k|β2)

2(~kθ · −γ′′(tj(~k))/2)1/2

= eik·γ(tj(~k))

√
π

|k|3/2
√

κj(tj(~k))
+

R1(~k) + R2(~k)

|k|2

+ |k|−3/2 eik·γ(0) i−1/2Γ(1/2,−i |k|β1)

2(~kθ · γ′′(tj(~k))/2)1/2
+ |k|−3/2 eik·γ(0) i−1/2Γ(1/2,−i |k|β2)

2(~kθ · γ′′(tj(~k))/2)1/2

(A.13)

Here, the remainders R1,2(~k) are bounded by:

∣∣∣R1(~k)
∣∣∣ ≤ 1 +

3

4

∥∥∥~kθ · γ′′′
j (t)

∥∥∥
L∞∣∣∣~kθ · γ′′(tj(~k))
∣∣∣

(tj(k
⊥) − tj(~k))

~kθ · γ′(tj(k⊥))

+

∣∣∣∣∣
~k⊥

θ · γ′(tj(k
⊥))

~kθ · γ′(tj(k⊥))
− 1

~kθ · γ′′(tj(~k))(tj(k⊥) − tj(~k))

∣∣∣∣∣ (A.14a)

∣∣∣R1(~k)
∣∣∣ ≤ 1 +

3

4

∥∥∥~kθ · γ′′′
j (t)

∥∥∥
L∞∣∣∣~kθ · γ′′(tj(~k))
∣∣∣

(tj(~k) − tj(−k⊥))

~kθ · γ′(tj(−k⊥))

+

∣∣∣∣∣
~k⊥

θ · γ′(tj(−k⊥))

~kθ · γ′(tj(−k⊥))
− 1

~kθ · γ′′(tj(~k))(tj(~k) − tj(−k⊥))

∣∣∣∣∣ (A.14b)

Since k · γ′
j(tj(

~k)) = 0 and γj(t) proceeds with unit speed, we find that ~kθ ·
γ′′

j (tj(~k)) = κ(tj(~k)). Note also that ~k⊥
θ · γ′′

j (tj(±k⊥)) = 0 since γ′′
j (tj(±k⊥)) ‖

±k⊥ (and similarly ~kθ · γ′(tj(−k⊥)) = 1. Substituting this into (A.14), as well
as bounding the curvature below by κ and adding them up yields:

∣∣∣R1(~k)
∣∣∣+
∣∣∣R2(~k)

∣∣∣ ≤ 2 +
3

2

∥∥γ′′′
j (t)

∥∥
L∞

κ

tj(k
⊥) − tj(−k⊥)

1

+

∣∣∣∣∣
1

κj(tj(~k))(tj(k⊥) − tj(~k))

∣∣∣∣∣+
∣∣∣∣∣

1

κj(tj(~k))(tj(~k) − tj(−k⊥))

∣∣∣∣∣ (A.15)
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Applying Lemma A.2 shows that (tj(k
⊥)− tj(~k)) ≥ π/2κ̄ and similarly (tj(~k)−

tj(−k⊥)) ≥ π/2κ̄. Substituting this into (A.15) and observing that κj(tj(~k)) >
κ yields:

∣∣∣R1(~k)
∣∣∣ +

∣∣∣R2(~k)
∣∣∣ ≤ 2 +

3

2

∥∥γ′′′
j (t)

∥∥
L∞

κ
(tj(k

⊥) − tj(−k⊥)) +
4κ̄

πκ
(A.16)

We must also bound
∣∣∣∣∣|k|

−3/2
eik·γ(0) i−1/2Γ(1/2,−i |k|β1)

2(~kθ · γ′′(tj(~k))/2)1/2
+ |k|−3/2

eik·γ(0) i−1/2Γ(1/2,−i |k|β2)

2(~kθ · γ′′(tj(~k))/2)1/2

∣∣∣∣∣

To do this, note that β1 = ~kθ · γj(tj(k
⊥))−~kθ · γj(tj(~k)) ≤ −1/κ̄ (and similarly

β2 ≤ −1/κ̄. Thus, − |k|β1,2 ≥ |kr| κ̄. This can be seen easily by considering

circle tangent to γj(tj(~k)) of radius 1/κ̄. Using Eq. (6.5.32) from [1, p.p. 263],
combined with the estimate on the remainder stated immediately after Eq.

(6.5.32), we observe that |Γ(1/2,−i |k|βi,j)| ≤ |k/κ̄|−1/2
. Thus, we find that:

∣∣∣∣∣|k|
−3/2

eik·γ(0) i−1/2Γ(1/2,−i |k|β1)

2(~kθ · γ′′(tj(~k))/2)1/2
+ |k|−3/2

eik·γ(0) i−1/2Γ(1/2,−i |k|β2)

2(~kθ · γ′′(tj(~k))/2)1/2

∣∣∣∣∣

≤
∣∣∣∣|k|

−3/2 (kκ̄)−1/2

2(κ/2)

∣∣∣∣+
∣∣∣∣|k|

−3/2 (kκ̄)−1/2

2(κ/2)

∣∣∣∣ ≤
1

|k|2
√

2κ̄

κ
(A.17)

Repeating this analysis for the part of the curve where k · Nj(t) < 0 yields the
following:

1̂γj
(~k) =

eik·γ(tj(~k))

|k|3/2

√
π√

κj(tj(~k))
+

eik·γ(tj(−k))

|k|3/2

√
π√

κj(tj(−k))
+

Ej(~k)

|k|2
(A.18)

where

∣∣∣Ej(~k)
∣∣∣ ≤ 4 + 3

∥∥γ′′′
j (t)

∥∥
L∞

κ
arclength(γj) +

8κ̄

πκ
+ 2

√
2κ̄

κ
(A.19)

Adding this result up over j = 0 . . .M − 1 and bounding ρj by ρ yields the
desired result. �

B Proof of Theorem 4.3: Leading Order Asymp-

totics

We first show that the directional filters behave properly when applied to the
leading order asymptotic terms of ρ̂(~k).
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For this, we need to prove two facts: a) that directional filters, after being
applied to the image, decay away from the points γj(tj(θ)), with θ the direction
of the filter and b) that the filters yield spikes at or near the points γj(tj(θ)).

The basis for our calculation is the following Lemma, which allows us to write
the directional filter applied to the leading order term of (3.2) as an integral
over the curve γj(t).

We consider only a directional filter oriented in the direction θ = 0. Results
for other directions can be obtained by rotation.

Lemma B.1 Let V(kθ) be supported on the interval [−α, α], let W(kr) ∈ L1(R, dkr)
and let W(kr)/kr ∈ L1(R, dkr). Then:

∫ ∞

0

∫ α

−α

e−ik·x eik·γj(tj(~k))

|k|3/2

√
π√

κj(tj(~k))
V(kθ)kr

1/2W(kr)dkθkrdkr

=

∫ α

−α

∫ ∞

0

eikrNj(tj(kθ))·(γj(tj(kθ))−x)

√
π√

κj(tj(kθ))
V(kθ)W(kr)dkrdkθ

=

∫ α

−α

√
π√

κj(tj(kθ))
V(kθ)W̌(Nj(tj(kθ)) · [γj(tj(kθ)) − x])dkθ

=
√

π

∫ tj(α)

tj(−α)

V(kθ(t))
√

κj(t)W̌(Nj(t) · [γj(t) − x])dt (B.1)

Proof.

∫ ∞

0

∫ α

−α

e−ik·x eik·γj(tj(~k))

|k|3/2

√
π√

κj(tj(~k))
V(kθ)kr

1/2W(kr)dkθkrdkr

=

∫ α

−α

∫ ∞

0

eikrNj(tj(kθ))·(γj(tj(kθ))−x)

√
π√

κj(tj(kθ))
V(kθ)W(kr)dkrdkθ (B.2)

Note that the inner integral of the last line of (B.2) is merely the inverse Fourier
transform of W(kr) evaluated at the point r = Nj(tj(kθ))·[γj(tj(kθ))−x]. Thus,

(B.2) =

∫ α

−α

√
π√

κj(tj(kθ))
V(kθ)W̌(Nj(tj(kθ)) · [γj(tj(kθ)) − x])dkθ

=
√

π

∫ tj(α)

tj(−α)

V(kθ(t))
√

κj(t)W̌(Nj(t) · [γj(t) − x])dt ,

completing the proof. �

Proposition B.2 Let V(kθ) be supported on the interval [−α, α], let W(kr) ∈
L1(R, dkr) and also W(kr)/kr ∈ L1(R, dkr).
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Define the smallest normal and tangent distances (DN and DT respectively)
as:

DN = inf
t∈[tj(−α),tj(α)]

Nj(t) · [γj(t) − x] (B.3a)

DT = inf
t∈[tj(−α),tj(α)]

γ′
j(t) · [γj(t) − x]. (B.3b)

Then we have the following bound on the action of the filter in the normal
directions:

∣∣∣∣∣∣

∫ ∞

0

∫ α

−α

e−ik·x eik·γj(tj(~k))

|k|3/2

√
π√

κj(tj(~k))
V(kθ)kr

1/2W(kr)dkθkrdkr

∣∣∣∣∣∣

≤
√

π

κ
‖V(kθ)‖L1(S1,dkθ) W(DN ) (B.4a)

We also have a weaker bound in the tangential direction:

∣∣∣∣∣∣

∫ ∞

0

∫ α

−α

e−ik·x eik·γj(tj(~k))

|k|3/2

√
π√

κj(tj(~k))
V(kθ)kr

1/2W(kr)dkθkrdkr

∣∣∣∣∣∣

≤
2
√

π ‖W(kr)/kr‖L1(R,dkr)

DT

(
‖V ′(kθ)‖L1

κ1/2
+

‖V(kθ)‖L1

∥∥γ′′′
j (t)

∥∥
L∞

2κ5/2

)

+

√
π ‖V(kθ)‖L1

∥∥W̌(z)(z + 1)
∥∥

L∞

D2
T

(B.4b)

Finally,

DN ≥ cos(α) |Nj(tj(0)) · (γ(tj(0)) − x)| − α2

κ2

[
κ +

κ̄

2
+

α

κ3

‖γ′′′(t)‖L∞

6

]
(B.5)

Proof.

The result (B.4a) follows from the second to last line of (B.1) and the fact
that ∣∣W̌(Nj(tj(kθ)) · [γj(tj(kθ)) − x])

∣∣ ≤ W(DN ).

To prove (B.5), we must bound Nj(tj(kθ)) · [γ(tj(kθ)) − x]. Let t0 = tj(0),
and consider the Taylor expansion (to second order) of γj(t).

Nj(t) ·
[
γj(t0) + γ′

j(t0)(t − t0) +
γ′′

j (t0)

2
(t − t0)

2 + remainder

]

By Taylor’s theorem, the remainder is bounded by |k · R(t)| ≤ ‖γ′′′(t)‖L∞

α3

6κj(t)
.

The first order term is:

|Nj(kθ) · γ′(t0)| = |cos(kθ + π/2)| ≤ |sin(kθ − 0)| ≤ |kθ| ≤ α
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We use also the fact that |t − t0| ≤ α/κ. Thus, we obtain:

|Nj(t) · (γ(t) − x) − Nj(t) · (γ(t0) − x)| ≤ α2

κ
+

κ̄

2

α2

κ2
+

‖γ′′′(t)‖L∞

6
|t − t0|3

≤ α2

(
1

κ
+

κ̄

2κ2

)
+

‖γ′′′(t)‖L∞

6

α3

κ3
(B.6)

Note also that Nj(t) · (γ(t0)−x) ≥ cos(α)Nj(t0) · (γ(t0)− x). We therefore find
that:

|Nj(t) · [γ(t) − x]| ≥

cos(α) |Nj(t0) · (γ(t0) − x)| −
[
α2

(
1

κ
+

κ̄

2κ2

)
+

‖γ′′′(t)‖L∞

6

α3

κ3

]
(B.7)

Taking the inf over the angles in [−α, α] yields the result we seek.
For (B.4b), note that ∂tNj(t) · [γj(t) − x] = κj(t)γ

′
j(t) · [γj(t) − x]. We can

then multiply and divide the integrand of (B.1) by this and then integrate by
parts to obtain:

(B.1)

=
√

π

∫ tj(α)

tj(−α)

V(kθ(t))
√

κj(t)

κj(t)γ′
j(t) · [γj(t) − x]

W̌(Nj(t) · [γ(t)−x])κj(t)γ
′
j(t) · [γj(t)−x]dt

= −
√

π

∫ tj(α)

tj(−α)

W̌(Nj(t) · [γ(t) − x])∂t
V(kθ(t))√

κj(t)γ′
j(t) · [γj(t) − x]

dt

= −
√

π

∫ tj(α)

tj(−α)

W̌(Nj(t) · [γ(t) − x]) ×
(

V ′(kθ(t))kθ
′(t)√

κj(t)γ′
j(t) · [γj(t) − x]

+
V(kθ(t))κ

′
j(t)

2(κj(t))3/2γ′
j(t) · [γj(t) − x]

+
V(kθ(t)) (γ′′(t) · [γj(t) − x] + γ′(t) · γ′(t))

κj(t)(γ′
j(t) · [γj(t) − x])2

)
dt

= −
√

π

∫ tj(α)

tj(−α)

W̌(Nj(t) · [γ(t) − x]) ×
(

V ′(kθ(t))κj(t)√
κj(t)γ′

j(t) · [γj(t) − x]

+
V(kθ(t))κ

′
j(t)

2(κj(t))3/2γ′
j(t) · [γj(t) − x]

+
V(kθ(t)) (κj(t)Nj(t) · [γj(t) − x] + 1)

κj(t)(γ′
j(t) · [γj(t) − x])2

)
dt

(B.8)
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We can further simplify this to:

(B.8) = −
√

π

∫ tj(α)

tj(−α)

W̌(Nj(t) · [γ(t) − x]) ×
(

V ′(kθ(t))
√

κj(t)

γ′
j(t) · [γj(t) − x]

+
V(kθ(t))κ

′
j(t)

2(κj(t))3/2γ′
j(t) · [γj(t) − x]

+
V(kθ(t)) (Nj(t) · [γj(t) − x] + 1)

(γ′
j(t) · [γj(t) − x])2

)
dt

=
√

π

∫ α

−α

W̌(Nj(tj(kθ)) · [γ(tj(kθ)) − x]) ×
(

V ′(kθ(tj(kθ)))
√

κj(tj(kθ))

γ′
j(tj(kθ)) · [γj(tj(kθ)) − x]

+
V(kθ(tj(kθ)))κ

′
j(tj(kθ))

2(κj(tj(kθ)))3/2γ′
j(tj(kθ)) · [γj(tj(kθ)) − x]

+
V(kθ(tj(kθ))) (Nj(tj(kθ)) · [γj(tj(kθ)) − x] + 1)

(γ′
j(tj(kθ)) · [γj(tj(kθ)) − x])2

)
dkθ

κj(tj(kθ))
(B.9)

Note that F̌ (z) =
∫ z

f̌(z′)dz′ =
∫

e−ikrzW(kr)(ikr)
−1dkr, and thus

∣∣F̌ (z)
∣∣ ≤

‖W(kr)/kr‖L1(R1). Noting also that γ′′′
j (t) · Nj(t) = κ′

j(t) (differentiate the

formula γ′′
j (t) = κj(t)Nj(t), use the Frenet-Serret formula and dot product with

Nj(t)), we find that
∣∣κ′

j(t)
∣∣ ≤

∣∣γ′′′
j (t)

∣∣. Combining these facts and using the
definition of DT , we obtain:

|(B.9)|

≤
√

π

∫ α

−α

‖W(kr)/kr‖L1(R,dkr)

(
V ′(kθ(tj(kθ)))√
κj(tj(kθ))DT

+
V(kθ(tj(kθ)))

∥∥γ′′′
j (t)

∥∥
L∞

2(κj(tj(kθ)))5/2DT

)

+F̌ (Nj(tj(kθ))·[γ(tj(kθ))−x])(Nj(tj(kθ))·[γ(tj(kθ))−x]+1)
V(kθ(tj(kθ)))

D2
T

)
dkθ

≤
√

π

∫ α

−α

‖W(kr)/kr‖L1(R,dkr)

(
V ′(kθ(tj(kθ)))√
κj(tj(kθ))DT

+
V(kθ(tj(kθ)))

∥∥γ′′′
j (t)

∥∥
L∞

2(κj(tj(kθ)))5/2DT

)

+
∥∥F̌ (z)(z + 1)

∥∥
L∞

V(kθ(tj(kθ)))

D2
T

dkθ

≤
2
√

π ‖W(kr)/kr‖L1(R,dkr)

DT

(
‖V ′(kθ)‖L1(S1,dkθ)

κ1/2
+

‖V(kθ)‖L1

∥∥γ′′′
j (t)

∥∥
L∞

2κ5/2

)

+

√
π ‖V(kθ)‖L1

∥∥F̌ (z)(z + 1)
∥∥

L∞

D2
T

(B.10)

This yields (B.4b), and completes the proof of Proposition B.2. �

Lemma B.3 Let γ(t) be a curve moving at unit speed and having non-vanishing
curvature, with unit tangent T (t) and normal N(t). Then:

|N(t) · (γ(t) − γ(t0))| ≤
θ2(t)

2κ
(B.11)
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Here, θ(t) = T (t)∠T (t0).

Proof. Letting θ(t) be the angle of the tangent, we find that θ′(t) = κ(t). Note
that non-vanishing curvature implies that t(θ) and θ(t) are both functions (at
least for small t and θ). Note first that:

d

dθ
(γ(t) − γ(t0)) = γ′(t)

dt

dθ
=

T (t)

κ(t)

Integrating this with respect to θ shows that |γ(t) − γ(t0)| ≤ θ/κ. Now compute:

d

dθ
N(t) · (γ(t) − γ(t0)) =

1

κ(t)

d

dt
N(t) · (γ(t) − γ(t0))

=
1

κ(t)
(−κ(t)T (t)) · (γ(t) − γ(t0)) +

1

κ(t)
N(t) · T (t) = T (t) · (γ(t) − γ(t0))

This implies that:
∣∣∣∣

d

dθ
N(t) · (γ(t) − γ(t0))

∣∣∣∣ ≤ |T (t) · (γ(t) − γ(t0))| ≤
θ

κ

Integrating with respect to θ yields the result we seek. �

Proposition B.4 Suppose that V(kθ) is smooth and compactly supported on
[−α, α]. Let W̌p(r) be a function symmetric about r = 0, and strictly positive on
the interval [−α2/2κ, α2/2κ]. Suppose also that W(kr) satisfies (4.1a). Assume
also that (4.4a) is satisfied.

Then at the point γj(tj(0)), we have that:

∫ ∞

−∞

∫ α

−α

e−ik·x eik·γj(tj(~k))

|k|3/2

√
π√

κj(tj(~k))
V(kθ)kr

1/2W(kr)dkθkrdkr

≥
√

π

2κ̄
‖V(kθ)‖L1(dkθ) inf

r∈[−α2/2κ,α2/2κ]
W̌p(r) (B.12)

Proof. Note that:

k · (γj(tj(~k)) − x) = krNj(tj(kθ)) · [γj(tj(kθ)) − x] (B.13)

Following the calculations of (B.1) and using (4.1b) as well as (B.13) we find:

∫ ∞

−∞

∫ α

−α

e−ik·x eik·γj(tj(~k))

|k|3/2

√
π√

κj(tj(~k))
V(kθ)kr

1/2W(kr)dkθkrdkr

=

∫ α

−α

√
π√

κj(tj(kθ))
V(kθ)W̌(Nj(tj(kθ)) · [γj(tj(kθ)) − x])dkθ

=

∫ α

−α

√
π√

κj(tj(kθ))
V(kθ)g

(
Nj(tj(kθ)) · [γj(tj(kθ)) − x]

)

× cos
(kmax + ktex

2
Nj(tj(kθ)) · [γj(tj(kθ)) − x]

)
dkθ (B.14)
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For x = γj(tj(0)) and α ∈ [−α, α], Lemma B.3 implies that:

|Nj(t) · (γ(t) − x)| ≤ α2

2κ
≤ π

4

where the last line follows from Lemma B.3. This implies that cos(Nj(t) · (γ(t) − x)) ≥
1/

√
2 and therefore:

(B.14) ≥
∫ α

−α

√
π√

κj(tj(kθ))
V(kθ)m

1√
2
dkθ

≥
√

π/2 ‖V(kθ)‖L1(dkθ) /
√

κ̄ inf
r∈[−α2/2κ,α2/2κ]

W̌p(r)

This is what we wanted to prove. �

B.1 Proof of Theorem 4.3: Putting it together

We now consider the behavior of the filter applied to the entire asymptotic
expansion of the image.

Lemma B.5 Suppose that W(kr) satisfies (4.4b). In that case

∣∣∣∣∣∣
Dθ,α

eik·γ(tj(~k))

|k|3/2

√
π√

κj(tj(~k))

∣∣∣∣∣∣
≤ C(W ,V , α) inf

t∈[tj(−α),tj(α)]

1

|γj(t) − x| , (B.15)

where C(W ,V , α) is given by (4.4d).

Proof. As before, we study the case when θ = 0, since the rest can be treated
by rotation.

Recalling (B.5), we define the quantities:

D+
N = sup

s∈[tj(−α),tj(α)]

inf
t∈[tj(−α),tj(α)]

|Nj(s) · [γj(t) − x]|

D+
T = sup

s∈[tj(−α),tj(α)]

inf
t∈[tj(−α),tj(α)]

|Tj(s) · [γj(t) − x]| .

Obviously D+
N ≥ DN and D+

T ≥ DT . Let N = Nj(s) be the normal at which
D+

N is achieved, and T = Tj(s) be the tangent at which D+
T is achieved. Let

~p = γj(t) − x. Since the angle between N and T is at most 2α, we find that

|x|2 ≤ sec(2α)2 |x|2(N,T ), where | · |(N,T ) is the L2 norm taken in the coordinate

system (N, T ). Thus, we find:

|~p|2 ≤ sec(2α)2 |~p|2(N,T ) ≤ 2 sec(2α)2 max{|N · ~p| , |T · ~p|}2
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Thus:

sup
t∈[tj(−α),tj(α)]

|γj(t) − x|

≤
√

2 sec(2α) sup
t∈[tj(−α),tj(α)]

max{|N · (γj(t) − x)| , |T · (γj(t) − x)|}2

=
√

2 sec(2α)max{ sup
t∈[tj(−α),tj(α)]

|N · (γj(t) − x)| , sup
t∈[tj(−α),tj(α)]

|T · (γj(t) − x)|}

=
√

2 sec(2α)max{D+
N , D+

T }

This implies that:

inf
1

|γj(t) − x| ≥
cos(2α)√

2
min

{
1

D+
N

,
1

D+
T

}
≥ cos(2α)√

2
min

{
1

DN
,

1

DT

}
(B.16)

Now, substituting (4.4b) into (B.4a) we find:

∣∣∣∣∣∣
Dα,θ

eik·γj(tj(~k))

|k|3/2

√
π√

κj(tj(~k))

∣∣∣∣∣∣
≤

CW

√
π/κ ‖V(kθ)‖L1(S1,dkθ)

DN
(B.17)

Using (B.4b), we find:

∣∣∣∣∣∣
Dα,θ

eik·γj(tj(~k))

|k|3/2

√
π√

κj(tj(~k))

∣∣∣∣∣∣

≤
2
√

π ‖W(kr)/kr‖L1(R,dkr)

DT

(
‖V ′(kθ)‖L1

κ1/2
+

‖V(kθ)‖L1

∥∥γ′′′
j (t)

∥∥
L∞

2κ5/2

)

+

√
π ‖V(kθ)‖L1

∥∥W̌(z)(z + 1)
∥∥

L∞

D2
T

≤
√

π

DT
√

κ

(
2 ‖W(kr)/kr‖L1(R,dkr)

[
‖V ′(kθ)‖L1 + ‖V(kθ)‖L1

∥∥γ′′′
j (t)

∥∥
L∞

2κ2

]

+
√

κ
∥∥W̌(z)(z + 1)

∥∥
L∞

)
(B.18)
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Taking the min of (B.17) and (B.18), and using (B.16) we find:

∣∣∣∣∣∣
Dα,θ

eik·γj(tj(~k))

|k|3/2

√
π√

κj(tj(~k))

∣∣∣∣∣∣
≤

√
π√
κ

min

{
1

DN
,

1

DT

}

× max

{
CW ‖V(kθ)‖L1(S1,dkθ) ,

(
2 ‖W(kr)/kr‖L1(R,dkr)

[
‖V ′(kθ)‖L1 + ‖V(kθ)‖L1

∥∥γ′′′
j (t)

∥∥
L∞

2κ2

]

+
√

κ
∥∥W̌(z)(z + 1)

∥∥
L∞

)}

≤
(

inf
1

|γj(t) − x|

) √
2π√

κ cos(2α)

max

{
CW ‖V(kθ)‖L1(S1,dkθ) ,

(
2 ‖W(kr)/kr‖L1(R,dkr)

[
‖V ′(kθ)‖L1 + ‖V(kθ)‖L1

∥∥γ′′′
j (t)

∥∥
L∞

2κ2

]

+
√

κ
∥∥W̌(z)(z + 1)

∥∥
L∞

)}
(B.19)

This is what we wanted to show. �

Recalling Definition 4.2, we have the following result:

Proposition B.6 Let x be a point not on any of the curves γi(t). Then (with
C(W ,V , α) as in Lemma B.5):

∣∣∣∣∣∣
Dθ,α




M−1∑

j=0

ρj 1̂γj
(x)



∣∣∣∣∣∣
≤ C(W ,V , α)

d(x, Aθ,α)

+
∥∥∥kr

−1/2W(kr)
∥∥∥

L1(R,dkr)
‖V(kθ)‖L1(S1,dkθ) Cgeo , (B.20)

where Cgeo is defined in (3.3).
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Proof. Begin by using (3.2):

∣∣∣∣∣∣
Dθ,α

M−1∑

j=0

ρj 1̂γj
(~k)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
Dθ,α

M−1∑

j=0

ρj


eik·γ(tj(~k))

|k|3/2

√
π√

κj(tj(~k))
+

eik·γ(tj(−k))

|k|3/2

√
π√

κj(tj(−k))



∣∣∣∣∣∣
+

∣∣∣∣∣Dθ,α
E(~k)

|k|2

∣∣∣∣∣

≤
M−1∑

j=0

ρj



∣∣∣∣∣∣
Dθ,α

eik·γ(tj(~k))

|k|3/2

√
π√

κj(tj(~k))

∣∣∣∣∣∣
+

∣∣∣∣∣Dθ,α
eik·γ(tj(−k))

|k|3/2

√
π√

κj(tj(−k))

∣∣∣∣∣




+

∣∣∣∣∣Dθ,α
E(~k)

|k|2

∣∣∣∣∣ ≤ C(W ,V , α)

×
M−1∑

j=0

ρj

[
inf

t∈[tj(−α+θ),tj(α+θ)]

1

|γj(t) − x| + inf
t∈[tj(−α+θ+π),tj(α+θ+π)]

1

|γj(t) − x|

]

+

∣∣∣∣∣Dθ,α
E(~k)

|k|2

∣∣∣∣∣

≤ C(W ,V , α)2M

d(x, Aθ,α)
max

j
ρj +

∣∣∣∣∣Dθ,α
E(~k)

|k|2

∣∣∣∣∣

≤ C(W ,V , α)2M

d(x, Aθ,α)
ρ +

∣∣∣∣∣Dθ,α
E(~k)

|k|2

∣∣∣∣∣

To control the last term, recall the bound Cgeo in(3.3) on E(~k):

∣∣∣∣∣Dθ,α
E(~k)

|k|2

∣∣∣∣∣ =

∣∣∣∣∣

∫
e−ik·xV(kθ)kr

1/2W(kr)
E(~k)

kr
2 dkθkrdkr

∣∣∣∣∣

≤
∫ ∫ ∣∣∣∣

W(kr)

kr
1/2

V(kθ)E(~k)

∣∣∣∣ dkθdkr

≤
∫ ∣∣∣∣

W(kr)

kr
1/2

∣∣∣∣ dkr

∫
Cgeo |V(kθ)| dkθ

≤
∥∥∥kr

−1/2W(kr)
∥∥∥

L1(R,dkr)
‖V(kθ)‖L1(S1,dkθ) Cgeo.

�
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Proposition B.7 We have the following estimate at the point x = γj(tj(θ)).

[θ·Nj(t)]Dθ,α




M−1∑

j=0

ρj 1̂γj
(x)


 ≥ ρ

√
π

2κ̄
‖V(kθ)‖L1(dkθ) inf

r∈[−α2/2κ,α2/2κ]
Wp(r)

−
[

C(W ,V , α)(2M − 1)

2M d(x, Aθ,α
j)

+
∥∥∥kr

−1/2W(kr)
∥∥∥

L1(R,dkr)
‖V(kθ)‖L1(S1,dkθ)

]
Cgeo .

(B.21)

Proof. By Proposition B.4, we have that:

Dθ,αρ
eik·γj(tj(~k))

|k|3/2

√
π√

κj(tj(~k))
1kθ∈[−α,α](kθ)

≥
√

π

2κ̄
ρ ‖V(kθ)‖L1(dkθ) inf

r∈[−α2/2κ,α2/2κ]
Wp(r)

Applying the same reasoning as in the proof of Proposition B.6, we find that:

∣∣∣∣∣∣
Dθ,α


∑

i6=j

ρj 1̂γi
(x)



∣∣∣∣∣∣
≤

[
C(W ,V , α)(2M − 2)

d(x, Aθ,α
j)

+
∥∥∥kr

−1/2W(kr)
∥∥∥

L1(R,dkr)
‖V(kθ)‖L1(S1,dkθ)

]
Cgeo .

The second triangle inequality yields the result we seek. �

Proof of Theorem 4.3. Proposition B.6 proves (4.4c).
Note that Assumption 2 implies that d(γj(tj(θ)), Aθ,α

j) ≥ δ. Substituting
this into Proposition B.7 proves (4.4e), and thus completes the proof of Theorem
4.3. �
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